Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America
- Autores
- Alvarez, Mariano Sebastián; Vera, Carolina Susana; Kiladis, George N.; Liebmann, Brant
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The regional influence of the Madden–Julian oscillation (MJO) on South America is described. Maps of probability of weekly-averaged rainfall exceeding the upper tercile were computed for all seasons and related statistically with the phase of the MJO as characterized by the Wheeler–Hendon real-time multivariate MJO (RMM) index and with the OLR MJO Index. The accompanying surface air temperature and circulation anomalies were also calculated. The influence of the MJO on regional scales along with their marked seasonal variations was documented. During December–February when the South American monsoon system is active, chances of enhanced rainfall are observed in southeastern South America (SESA) region mainly during RMM phases 3 and 4, accompanied by cold anomalies in the extratropics, while enhanced rainfall in the South Atlantic Convergence Zone (SACZ) region is observed in phases 8 and 1. The SESA (SACZ) signal is characterized by upper-level convergence (divergence) over tropical South America and a cyclonic (anticyclonic) anomaly near the southern tip of the continent. Impacts during March–May are similar, but attenuated in the extratropics. Conversely, in June–November, reduced rainfall and cold anomalies are observed near the coast of the SACZ region during phases 4 and 5, favored by upper-level convergence over tropical South America and an anticyclonic anomaly over southern South America. In September–November, enhanced rainfall and upper-level divergence are observed in the SACZ region during phases 7 and 8. These signals are generated primarily through the propagation of Rossby wave energy generated in the region of anomalous heating associated with the MJO.
Fil: Alvarez, Mariano Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Vera, Carolina Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Kiladis, George N.. National Oceanic and Atmospheric Administration; Estados Unidos
Fil: Liebmann, Brant. National Oceanic and Atmospheric Administration; Estados Unidos. State University of Colorado Boulder; Estados Unidos - Materia
-
Madden-Julian Oscillation
South America
Precipitation
Impacts
Surface Air Temperature - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/41892
Ver los metadatos del registro completo
id |
CONICETDig_aaa2f56b0f1bc2ce313e210bcd861ec5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/41892 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South AmericaAlvarez, Mariano SebastiánVera, Carolina SusanaKiladis, George N.Liebmann, BrantMadden-Julian OscillationSouth AmericaPrecipitationImpactsSurface Air Temperaturehttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The regional influence of the Madden–Julian oscillation (MJO) on South America is described. Maps of probability of weekly-averaged rainfall exceeding the upper tercile were computed for all seasons and related statistically with the phase of the MJO as characterized by the Wheeler–Hendon real-time multivariate MJO (RMM) index and with the OLR MJO Index. The accompanying surface air temperature and circulation anomalies were also calculated. The influence of the MJO on regional scales along with their marked seasonal variations was documented. During December–February when the South American monsoon system is active, chances of enhanced rainfall are observed in southeastern South America (SESA) region mainly during RMM phases 3 and 4, accompanied by cold anomalies in the extratropics, while enhanced rainfall in the South Atlantic Convergence Zone (SACZ) region is observed in phases 8 and 1. The SESA (SACZ) signal is characterized by upper-level convergence (divergence) over tropical South America and a cyclonic (anticyclonic) anomaly near the southern tip of the continent. Impacts during March–May are similar, but attenuated in the extratropics. Conversely, in June–November, reduced rainfall and cold anomalies are observed near the coast of the SACZ region during phases 4 and 5, favored by upper-level convergence over tropical South America and an anticyclonic anomaly over southern South America. In September–November, enhanced rainfall and upper-level divergence are observed in the SACZ region during phases 7 and 8. These signals are generated primarily through the propagation of Rossby wave energy generated in the region of anomalous heating associated with the MJO.Fil: Alvarez, Mariano Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Vera, Carolina Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Kiladis, George N.. National Oceanic and Atmospheric Administration; Estados UnidosFil: Liebmann, Brant. National Oceanic and Atmospheric Administration; Estados Unidos. State University of Colorado Boulder; Estados UnidosSpringer2015-04-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41892Alvarez, Mariano Sebastián; Vera, Carolina Susana; Kiladis, George N.; Liebmann, Brant; Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America; Springer; Climate Dynamics; 46; 262; 3-4-2015; 245-2620930-75751432-0894CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00382-015-2581-6info:eu-repo/semantics/altIdentifier/doi/10.1007/s00382-015-2581-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:38Zoai:ri.conicet.gov.ar:11336/41892instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:39.0CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America |
title |
Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America |
spellingShingle |
Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America Alvarez, Mariano Sebastián Madden-Julian Oscillation South America Precipitation Impacts Surface Air Temperature |
title_short |
Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America |
title_full |
Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America |
title_fullStr |
Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America |
title_full_unstemmed |
Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America |
title_sort |
Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America |
dc.creator.none.fl_str_mv |
Alvarez, Mariano Sebastián Vera, Carolina Susana Kiladis, George N. Liebmann, Brant |
author |
Alvarez, Mariano Sebastián |
author_facet |
Alvarez, Mariano Sebastián Vera, Carolina Susana Kiladis, George N. Liebmann, Brant |
author_role |
author |
author2 |
Vera, Carolina Susana Kiladis, George N. Liebmann, Brant |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Madden-Julian Oscillation South America Precipitation Impacts Surface Air Temperature |
topic |
Madden-Julian Oscillation South America Precipitation Impacts Surface Air Temperature |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The regional influence of the Madden–Julian oscillation (MJO) on South America is described. Maps of probability of weekly-averaged rainfall exceeding the upper tercile were computed for all seasons and related statistically with the phase of the MJO as characterized by the Wheeler–Hendon real-time multivariate MJO (RMM) index and with the OLR MJO Index. The accompanying surface air temperature and circulation anomalies were also calculated. The influence of the MJO on regional scales along with their marked seasonal variations was documented. During December–February when the South American monsoon system is active, chances of enhanced rainfall are observed in southeastern South America (SESA) region mainly during RMM phases 3 and 4, accompanied by cold anomalies in the extratropics, while enhanced rainfall in the South Atlantic Convergence Zone (SACZ) region is observed in phases 8 and 1. The SESA (SACZ) signal is characterized by upper-level convergence (divergence) over tropical South America and a cyclonic (anticyclonic) anomaly near the southern tip of the continent. Impacts during March–May are similar, but attenuated in the extratropics. Conversely, in June–November, reduced rainfall and cold anomalies are observed near the coast of the SACZ region during phases 4 and 5, favored by upper-level convergence over tropical South America and an anticyclonic anomaly over southern South America. In September–November, enhanced rainfall and upper-level divergence are observed in the SACZ region during phases 7 and 8. These signals are generated primarily through the propagation of Rossby wave energy generated in the region of anomalous heating associated with the MJO. Fil: Alvarez, Mariano Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina Fil: Vera, Carolina Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina Fil: Kiladis, George N.. National Oceanic and Atmospheric Administration; Estados Unidos Fil: Liebmann, Brant. National Oceanic and Atmospheric Administration; Estados Unidos. State University of Colorado Boulder; Estados Unidos |
description |
The regional influence of the Madden–Julian oscillation (MJO) on South America is described. Maps of probability of weekly-averaged rainfall exceeding the upper tercile were computed for all seasons and related statistically with the phase of the MJO as characterized by the Wheeler–Hendon real-time multivariate MJO (RMM) index and with the OLR MJO Index. The accompanying surface air temperature and circulation anomalies were also calculated. The influence of the MJO on regional scales along with their marked seasonal variations was documented. During December–February when the South American monsoon system is active, chances of enhanced rainfall are observed in southeastern South America (SESA) region mainly during RMM phases 3 and 4, accompanied by cold anomalies in the extratropics, while enhanced rainfall in the South Atlantic Convergence Zone (SACZ) region is observed in phases 8 and 1. The SESA (SACZ) signal is characterized by upper-level convergence (divergence) over tropical South America and a cyclonic (anticyclonic) anomaly near the southern tip of the continent. Impacts during March–May are similar, but attenuated in the extratropics. Conversely, in June–November, reduced rainfall and cold anomalies are observed near the coast of the SACZ region during phases 4 and 5, favored by upper-level convergence over tropical South America and an anticyclonic anomaly over southern South America. In September–November, enhanced rainfall and upper-level divergence are observed in the SACZ region during phases 7 and 8. These signals are generated primarily through the propagation of Rossby wave energy generated in the region of anomalous heating associated with the MJO. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/41892 Alvarez, Mariano Sebastián; Vera, Carolina Susana; Kiladis, George N.; Liebmann, Brant; Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America; Springer; Climate Dynamics; 46; 262; 3-4-2015; 245-262 0930-7575 1432-0894 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/41892 |
identifier_str_mv |
Alvarez, Mariano Sebastián; Vera, Carolina Susana; Kiladis, George N.; Liebmann, Brant; Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America; Springer; Climate Dynamics; 46; 262; 3-4-2015; 245-262 0930-7575 1432-0894 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00382-015-2581-6 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00382-015-2581-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614397182345216 |
score |
13.070432 |