Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America

Autores
Alvarez, Mariano Sebastián; Vera, Carolina Susana; Kiladis, George N.; Liebmann, Brant
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The regional influence of the Madden–Julian oscillation (MJO) on South America is described. Maps of probability of weekly-averaged rainfall exceeding the upper tercile were computed for all seasons and related statistically with the phase of the MJO as characterized by the Wheeler–Hendon real-time multivariate MJO (RMM) index and with the OLR MJO Index. The accompanying surface air temperature and circulation anomalies were also calculated. The influence of the MJO on regional scales along with their marked seasonal variations was documented. During December–February when the South American monsoon system is active, chances of enhanced rainfall are observed in southeastern South America (SESA) region mainly during RMM phases 3 and 4, accompanied by cold anomalies in the extratropics, while enhanced rainfall in the South Atlantic Convergence Zone (SACZ) region is observed in phases 8 and 1. The SESA (SACZ) signal is characterized by upper-level convergence (divergence) over tropical South America and a cyclonic (anticyclonic) anomaly near the southern tip of the continent. Impacts during March–May are similar, but attenuated in the extratropics. Conversely, in June–November, reduced rainfall and cold anomalies are observed near the coast of the SACZ region during phases 4 and 5, favored by upper-level convergence over tropical South America and an anticyclonic anomaly over southern South America. In September–November, enhanced rainfall and upper-level divergence are observed in the SACZ region during phases 7 and 8. These signals are generated primarily through the propagation of Rossby wave energy generated in the region of anomalous heating associated with the MJO.
Fil: Alvarez, Mariano Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Vera, Carolina Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Kiladis, George N.. National Oceanic and Atmospheric Administration; Estados Unidos
Fil: Liebmann, Brant. National Oceanic and Atmospheric Administration; Estados Unidos. State University of Colorado Boulder; Estados Unidos
Materia
Madden-Julian Oscillation
South America
Precipitation
Impacts
Surface Air Temperature
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/41892

id CONICETDig_aaa2f56b0f1bc2ce313e210bcd861ec5
oai_identifier_str oai:ri.conicet.gov.ar:11336/41892
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South AmericaAlvarez, Mariano SebastiánVera, Carolina SusanaKiladis, George N.Liebmann, BrantMadden-Julian OscillationSouth AmericaPrecipitationImpactsSurface Air Temperaturehttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The regional influence of the Madden–Julian oscillation (MJO) on South America is described. Maps of probability of weekly-averaged rainfall exceeding the upper tercile were computed for all seasons and related statistically with the phase of the MJO as characterized by the Wheeler–Hendon real-time multivariate MJO (RMM) index and with the OLR MJO Index. The accompanying surface air temperature and circulation anomalies were also calculated. The influence of the MJO on regional scales along with their marked seasonal variations was documented. During December–February when the South American monsoon system is active, chances of enhanced rainfall are observed in southeastern South America (SESA) region mainly during RMM phases 3 and 4, accompanied by cold anomalies in the extratropics, while enhanced rainfall in the South Atlantic Convergence Zone (SACZ) region is observed in phases 8 and 1. The SESA (SACZ) signal is characterized by upper-level convergence (divergence) over tropical South America and a cyclonic (anticyclonic) anomaly near the southern tip of the continent. Impacts during March–May are similar, but attenuated in the extratropics. Conversely, in June–November, reduced rainfall and cold anomalies are observed near the coast of the SACZ region during phases 4 and 5, favored by upper-level convergence over tropical South America and an anticyclonic anomaly over southern South America. In September–November, enhanced rainfall and upper-level divergence are observed in the SACZ region during phases 7 and 8. These signals are generated primarily through the propagation of Rossby wave energy generated in the region of anomalous heating associated with the MJO.Fil: Alvarez, Mariano Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Vera, Carolina Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Kiladis, George N.. National Oceanic and Atmospheric Administration; Estados UnidosFil: Liebmann, Brant. National Oceanic and Atmospheric Administration; Estados Unidos. State University of Colorado Boulder; Estados UnidosSpringer2015-04-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41892Alvarez, Mariano Sebastián; Vera, Carolina Susana; Kiladis, George N.; Liebmann, Brant; Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America; Springer; Climate Dynamics; 46; 262; 3-4-2015; 245-2620930-75751432-0894CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00382-015-2581-6info:eu-repo/semantics/altIdentifier/doi/10.1007/s00382-015-2581-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:38Zoai:ri.conicet.gov.ar:11336/41892instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:39.0CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America
title Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America
spellingShingle Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America
Alvarez, Mariano Sebastián
Madden-Julian Oscillation
South America
Precipitation
Impacts
Surface Air Temperature
title_short Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America
title_full Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America
title_fullStr Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America
title_full_unstemmed Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America
title_sort Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America
dc.creator.none.fl_str_mv Alvarez, Mariano Sebastián
Vera, Carolina Susana
Kiladis, George N.
Liebmann, Brant
author Alvarez, Mariano Sebastián
author_facet Alvarez, Mariano Sebastián
Vera, Carolina Susana
Kiladis, George N.
Liebmann, Brant
author_role author
author2 Vera, Carolina Susana
Kiladis, George N.
Liebmann, Brant
author2_role author
author
author
dc.subject.none.fl_str_mv Madden-Julian Oscillation
South America
Precipitation
Impacts
Surface Air Temperature
topic Madden-Julian Oscillation
South America
Precipitation
Impacts
Surface Air Temperature
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The regional influence of the Madden–Julian oscillation (MJO) on South America is described. Maps of probability of weekly-averaged rainfall exceeding the upper tercile were computed for all seasons and related statistically with the phase of the MJO as characterized by the Wheeler–Hendon real-time multivariate MJO (RMM) index and with the OLR MJO Index. The accompanying surface air temperature and circulation anomalies were also calculated. The influence of the MJO on regional scales along with their marked seasonal variations was documented. During December–February when the South American monsoon system is active, chances of enhanced rainfall are observed in southeastern South America (SESA) region mainly during RMM phases 3 and 4, accompanied by cold anomalies in the extratropics, while enhanced rainfall in the South Atlantic Convergence Zone (SACZ) region is observed in phases 8 and 1. The SESA (SACZ) signal is characterized by upper-level convergence (divergence) over tropical South America and a cyclonic (anticyclonic) anomaly near the southern tip of the continent. Impacts during March–May are similar, but attenuated in the extratropics. Conversely, in June–November, reduced rainfall and cold anomalies are observed near the coast of the SACZ region during phases 4 and 5, favored by upper-level convergence over tropical South America and an anticyclonic anomaly over southern South America. In September–November, enhanced rainfall and upper-level divergence are observed in the SACZ region during phases 7 and 8. These signals are generated primarily through the propagation of Rossby wave energy generated in the region of anomalous heating associated with the MJO.
Fil: Alvarez, Mariano Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Vera, Carolina Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Kiladis, George N.. National Oceanic and Atmospheric Administration; Estados Unidos
Fil: Liebmann, Brant. National Oceanic and Atmospheric Administration; Estados Unidos. State University of Colorado Boulder; Estados Unidos
description The regional influence of the Madden–Julian oscillation (MJO) on South America is described. Maps of probability of weekly-averaged rainfall exceeding the upper tercile were computed for all seasons and related statistically with the phase of the MJO as characterized by the Wheeler–Hendon real-time multivariate MJO (RMM) index and with the OLR MJO Index. The accompanying surface air temperature and circulation anomalies were also calculated. The influence of the MJO on regional scales along with their marked seasonal variations was documented. During December–February when the South American monsoon system is active, chances of enhanced rainfall are observed in southeastern South America (SESA) region mainly during RMM phases 3 and 4, accompanied by cold anomalies in the extratropics, while enhanced rainfall in the South Atlantic Convergence Zone (SACZ) region is observed in phases 8 and 1. The SESA (SACZ) signal is characterized by upper-level convergence (divergence) over tropical South America and a cyclonic (anticyclonic) anomaly near the southern tip of the continent. Impacts during March–May are similar, but attenuated in the extratropics. Conversely, in June–November, reduced rainfall and cold anomalies are observed near the coast of the SACZ region during phases 4 and 5, favored by upper-level convergence over tropical South America and an anticyclonic anomaly over southern South America. In September–November, enhanced rainfall and upper-level divergence are observed in the SACZ region during phases 7 and 8. These signals are generated primarily through the propagation of Rossby wave energy generated in the region of anomalous heating associated with the MJO.
publishDate 2015
dc.date.none.fl_str_mv 2015-04-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/41892
Alvarez, Mariano Sebastián; Vera, Carolina Susana; Kiladis, George N.; Liebmann, Brant; Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America; Springer; Climate Dynamics; 46; 262; 3-4-2015; 245-262
0930-7575
1432-0894
CONICET Digital
CONICET
url http://hdl.handle.net/11336/41892
identifier_str_mv Alvarez, Mariano Sebastián; Vera, Carolina Susana; Kiladis, George N.; Liebmann, Brant; Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America; Springer; Climate Dynamics; 46; 262; 3-4-2015; 245-262
0930-7575
1432-0894
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00382-015-2581-6
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00382-015-2581-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614397182345216
score 13.070432