Phase Transformation in Tantalum under Extreme Laser Deformation
- Autores
- Lu, C. H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, Eduardo Marcial; Meyers, Marc A.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).
Fil: Lu, C. H.. University of California at San Diego; Estados Unidos
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos
Fil: Remington, B. A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Maddox, B. R.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos - Materia
-
TANTALUM
PHASE TRANSFORMATION
HIGH PRESSURE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/180295
Ver los metadatos del registro completo
id |
CONICETDig_aa563c7814205d3733a0315e3333a0b6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/180295 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Phase Transformation in Tantalum under Extreme Laser DeformationLu, C. H.Hahn, E. N.Remington, B. A.Maddox, B. R.Bringa, Eduardo MarcialMeyers, Marc A.TANTALUMPHASE TRANSFORMATIONHIGH PRESSUREhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).Fil: Lu, C. H.. University of California at San Diego; Estados UnidosFil: Hahn, E. N.. University of California at San Diego; Estados UnidosFil: Remington, B. A.. Lawrence Livermore National Laboratory; Estados UnidosFil: Maddox, B. R.. Lawrence Livermore National Laboratory; Estados UnidosFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Meyers, Marc A.. University of California at San Diego; Estados UnidosNature Publishing Group2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/180295Lu, C. H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, Eduardo Marcial; et al.; Phase Transformation in Tantalum under Extreme Laser Deformation; Nature Publishing Group; Scientific Reports; 5; 10-2015; 1-82045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/srep15064info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:54Zoai:ri.conicet.gov.ar:11336/180295instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:54.974CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Phase Transformation in Tantalum under Extreme Laser Deformation |
title |
Phase Transformation in Tantalum under Extreme Laser Deformation |
spellingShingle |
Phase Transformation in Tantalum under Extreme Laser Deformation Lu, C. H. TANTALUM PHASE TRANSFORMATION HIGH PRESSURE |
title_short |
Phase Transformation in Tantalum under Extreme Laser Deformation |
title_full |
Phase Transformation in Tantalum under Extreme Laser Deformation |
title_fullStr |
Phase Transformation in Tantalum under Extreme Laser Deformation |
title_full_unstemmed |
Phase Transformation in Tantalum under Extreme Laser Deformation |
title_sort |
Phase Transformation in Tantalum under Extreme Laser Deformation |
dc.creator.none.fl_str_mv |
Lu, C. H. Hahn, E. N. Remington, B. A. Maddox, B. R. Bringa, Eduardo Marcial Meyers, Marc A. |
author |
Lu, C. H. |
author_facet |
Lu, C. H. Hahn, E. N. Remington, B. A. Maddox, B. R. Bringa, Eduardo Marcial Meyers, Marc A. |
author_role |
author |
author2 |
Hahn, E. N. Remington, B. A. Maddox, B. R. Bringa, Eduardo Marcial Meyers, Marc A. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
TANTALUM PHASE TRANSFORMATION HIGH PRESSURE |
topic |
TANTALUM PHASE TRANSFORMATION HIGH PRESSURE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear). Fil: Lu, C. H.. University of California at San Diego; Estados Unidos Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos Fil: Remington, B. A.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Maddox, B. R.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos |
description |
The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear). |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/180295 Lu, C. H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, Eduardo Marcial; et al.; Phase Transformation in Tantalum under Extreme Laser Deformation; Nature Publishing Group; Scientific Reports; 5; 10-2015; 1-8 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/180295 |
identifier_str_mv |
Lu, C. H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, Eduardo Marcial; et al.; Phase Transformation in Tantalum under Extreme Laser Deformation; Nature Publishing Group; Scientific Reports; 5; 10-2015; 1-8 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/srep15064 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614235037892608 |
score |
13.070432 |