Phase Transformation in Tantalum under Extreme Laser Deformation

Autores
Lu, C. H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, Eduardo Marcial; Meyers, Marc A.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).
Fil: Lu, C. H.. University of California at San Diego; Estados Unidos
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos
Fil: Remington, B. A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Maddox, B. R.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos
Materia
TANTALUM
PHASE TRANSFORMATION
HIGH PRESSURE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/180295

id CONICETDig_aa563c7814205d3733a0315e3333a0b6
oai_identifier_str oai:ri.conicet.gov.ar:11336/180295
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Phase Transformation in Tantalum under Extreme Laser DeformationLu, C. H.Hahn, E. N.Remington, B. A.Maddox, B. R.Bringa, Eduardo MarcialMeyers, Marc A.TANTALUMPHASE TRANSFORMATIONHIGH PRESSUREhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).Fil: Lu, C. H.. University of California at San Diego; Estados UnidosFil: Hahn, E. N.. University of California at San Diego; Estados UnidosFil: Remington, B. A.. Lawrence Livermore National Laboratory; Estados UnidosFil: Maddox, B. R.. Lawrence Livermore National Laboratory; Estados UnidosFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Meyers, Marc A.. University of California at San Diego; Estados UnidosNature Publishing Group2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/180295Lu, C. H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, Eduardo Marcial; et al.; Phase Transformation in Tantalum under Extreme Laser Deformation; Nature Publishing Group; Scientific Reports; 5; 10-2015; 1-82045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/srep15064info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:54Zoai:ri.conicet.gov.ar:11336/180295instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:54.974CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Phase Transformation in Tantalum under Extreme Laser Deformation
title Phase Transformation in Tantalum under Extreme Laser Deformation
spellingShingle Phase Transformation in Tantalum under Extreme Laser Deformation
Lu, C. H.
TANTALUM
PHASE TRANSFORMATION
HIGH PRESSURE
title_short Phase Transformation in Tantalum under Extreme Laser Deformation
title_full Phase Transformation in Tantalum under Extreme Laser Deformation
title_fullStr Phase Transformation in Tantalum under Extreme Laser Deformation
title_full_unstemmed Phase Transformation in Tantalum under Extreme Laser Deformation
title_sort Phase Transformation in Tantalum under Extreme Laser Deformation
dc.creator.none.fl_str_mv Lu, C. H.
Hahn, E. N.
Remington, B. A.
Maddox, B. R.
Bringa, Eduardo Marcial
Meyers, Marc A.
author Lu, C. H.
author_facet Lu, C. H.
Hahn, E. N.
Remington, B. A.
Maddox, B. R.
Bringa, Eduardo Marcial
Meyers, Marc A.
author_role author
author2 Hahn, E. N.
Remington, B. A.
Maddox, B. R.
Bringa, Eduardo Marcial
Meyers, Marc A.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv TANTALUM
PHASE TRANSFORMATION
HIGH PRESSURE
topic TANTALUM
PHASE TRANSFORMATION
HIGH PRESSURE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).
Fil: Lu, C. H.. University of California at San Diego; Estados Unidos
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos
Fil: Remington, B. A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Maddox, B. R.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos
description The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).
publishDate 2015
dc.date.none.fl_str_mv 2015-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/180295
Lu, C. H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, Eduardo Marcial; et al.; Phase Transformation in Tantalum under Extreme Laser Deformation; Nature Publishing Group; Scientific Reports; 5; 10-2015; 1-8
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/180295
identifier_str_mv Lu, C. H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, Eduardo Marcial; et al.; Phase Transformation in Tantalum under Extreme Laser Deformation; Nature Publishing Group; Scientific Reports; 5; 10-2015; 1-8
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1038/srep15064
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614235037892608
score 13.070432