Application of a temporal decorrelation model using Sentinel-1 SAR data to Detect volcanic ash deposits related to the 2020 Taal volcano eruption
- Autores
- Naranjo Ariza, Camilo Andres; Euillades, Pablo Andrés; Toyos, Guillermo Pablo; Euillades, Leonardo Daniel; Villarosa, Gustavo
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Volcanic ash deposits affect buildings, vegetation, and population. After a volcanic eruption, it is critical to detect the areas affected by ash deposits to achieve an advisable management of the emergency. Optical sensors have been widely used to carry out this task, but they are limited by solar illumination and weather conditions. As an alternative, Synthetic Aperture Radar (SAR) data are not affected by those limitations. Recently, a Temporal Decorrelation Model (TDM) that uses SAR data was proposed for detecting and mapping ash deposits, but it has only been applied to L-band data. Today there is available a huge quantity of C-band data acquired by the Sentinel-1 constellation. In this study we applied the TDM to Sentinel-1 data in order to assess its performance for detecting volcanic ash deposits after an eruption. We selected the eruption of Taal volcano in The Philippines on January 12, 2020, as our case study. We computed more than 4000 interferometric pairs from a dataset of 93 images acquired before, during, and after the eruption. Our results show that TDM can be applied to C-band data, despite the higher temporal decorrelation suffered by them. Our final probability map is consistent with the field evidence reported by the Philippines Institute of Volcanology and Seismology (PHILVOLCS) and the isopachs map reported in the literature. This new application provides a novel framework for the coherence exploitation of C-Band data. Also, this approach could be applied to detection and monitoring of other natural disasters.
Fil: Naranjo Ariza, Camilo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales; Argentina
Fil: Euillades, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; Argentina
Fil: Toyos, Guillermo Pablo. Comision Nacional de Actividades Espaciales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Euillades, Leonardo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; Argentina
Fil: Villarosa, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales; Argentina - Materia
-
ASH DEPOSITS
CHANGE DETECTION
INSAR
SENTINEL-1
TEMPORAL DECORRELATION MODEL
VOLCANIC ASH - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/219378
Ver los metadatos del registro completo
id |
CONICETDig_aa1878caa773a89dbb93055cd8b8f340 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/219378 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Application of a temporal decorrelation model using Sentinel-1 SAR data to Detect volcanic ash deposits related to the 2020 Taal volcano eruptionNaranjo Ariza, Camilo AndresEuillades, Pablo AndrésToyos, Guillermo PabloEuillades, Leonardo DanielVillarosa, GustavoASH DEPOSITSCHANGE DETECTIONINSARSENTINEL-1TEMPORAL DECORRELATION MODELVOLCANIC ASHhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Volcanic ash deposits affect buildings, vegetation, and population. After a volcanic eruption, it is critical to detect the areas affected by ash deposits to achieve an advisable management of the emergency. Optical sensors have been widely used to carry out this task, but they are limited by solar illumination and weather conditions. As an alternative, Synthetic Aperture Radar (SAR) data are not affected by those limitations. Recently, a Temporal Decorrelation Model (TDM) that uses SAR data was proposed for detecting and mapping ash deposits, but it has only been applied to L-band data. Today there is available a huge quantity of C-band data acquired by the Sentinel-1 constellation. In this study we applied the TDM to Sentinel-1 data in order to assess its performance for detecting volcanic ash deposits after an eruption. We selected the eruption of Taal volcano in The Philippines on January 12, 2020, as our case study. We computed more than 4000 interferometric pairs from a dataset of 93 images acquired before, during, and after the eruption. Our results show that TDM can be applied to C-band data, despite the higher temporal decorrelation suffered by them. Our final probability map is consistent with the field evidence reported by the Philippines Institute of Volcanology and Seismology (PHILVOLCS) and the isopachs map reported in the literature. This new application provides a novel framework for the coherence exploitation of C-Band data. Also, this approach could be applied to detection and monitoring of other natural disasters.Fil: Naranjo Ariza, Camilo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales; ArgentinaFil: Euillades, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; ArgentinaFil: Toyos, Guillermo Pablo. Comision Nacional de Actividades Espaciales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Euillades, Leonardo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; ArgentinaFil: Villarosa, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales; ArgentinaElsevier2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219378Naranjo Ariza, Camilo Andres; Euillades, Pablo Andrés; Toyos, Guillermo Pablo; Euillades, Leonardo Daniel; Villarosa, Gustavo; Application of a temporal decorrelation model using Sentinel-1 SAR data to Detect volcanic ash deposits related to the 2020 Taal volcano eruption; Elsevier; Remote Sensing Applications: Society and Environment; 31; 5-2023; 1-292352-9385CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2352938523000733info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rsase.2023.100991info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:37Zoai:ri.conicet.gov.ar:11336/219378instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:37.382CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Application of a temporal decorrelation model using Sentinel-1 SAR data to Detect volcanic ash deposits related to the 2020 Taal volcano eruption |
title |
Application of a temporal decorrelation model using Sentinel-1 SAR data to Detect volcanic ash deposits related to the 2020 Taal volcano eruption |
spellingShingle |
Application of a temporal decorrelation model using Sentinel-1 SAR data to Detect volcanic ash deposits related to the 2020 Taal volcano eruption Naranjo Ariza, Camilo Andres ASH DEPOSITS CHANGE DETECTION INSAR SENTINEL-1 TEMPORAL DECORRELATION MODEL VOLCANIC ASH |
title_short |
Application of a temporal decorrelation model using Sentinel-1 SAR data to Detect volcanic ash deposits related to the 2020 Taal volcano eruption |
title_full |
Application of a temporal decorrelation model using Sentinel-1 SAR data to Detect volcanic ash deposits related to the 2020 Taal volcano eruption |
title_fullStr |
Application of a temporal decorrelation model using Sentinel-1 SAR data to Detect volcanic ash deposits related to the 2020 Taal volcano eruption |
title_full_unstemmed |
Application of a temporal decorrelation model using Sentinel-1 SAR data to Detect volcanic ash deposits related to the 2020 Taal volcano eruption |
title_sort |
Application of a temporal decorrelation model using Sentinel-1 SAR data to Detect volcanic ash deposits related to the 2020 Taal volcano eruption |
dc.creator.none.fl_str_mv |
Naranjo Ariza, Camilo Andres Euillades, Pablo Andrés Toyos, Guillermo Pablo Euillades, Leonardo Daniel Villarosa, Gustavo |
author |
Naranjo Ariza, Camilo Andres |
author_facet |
Naranjo Ariza, Camilo Andres Euillades, Pablo Andrés Toyos, Guillermo Pablo Euillades, Leonardo Daniel Villarosa, Gustavo |
author_role |
author |
author2 |
Euillades, Pablo Andrés Toyos, Guillermo Pablo Euillades, Leonardo Daniel Villarosa, Gustavo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
ASH DEPOSITS CHANGE DETECTION INSAR SENTINEL-1 TEMPORAL DECORRELATION MODEL VOLCANIC ASH |
topic |
ASH DEPOSITS CHANGE DETECTION INSAR SENTINEL-1 TEMPORAL DECORRELATION MODEL VOLCANIC ASH |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Volcanic ash deposits affect buildings, vegetation, and population. After a volcanic eruption, it is critical to detect the areas affected by ash deposits to achieve an advisable management of the emergency. Optical sensors have been widely used to carry out this task, but they are limited by solar illumination and weather conditions. As an alternative, Synthetic Aperture Radar (SAR) data are not affected by those limitations. Recently, a Temporal Decorrelation Model (TDM) that uses SAR data was proposed for detecting and mapping ash deposits, but it has only been applied to L-band data. Today there is available a huge quantity of C-band data acquired by the Sentinel-1 constellation. In this study we applied the TDM to Sentinel-1 data in order to assess its performance for detecting volcanic ash deposits after an eruption. We selected the eruption of Taal volcano in The Philippines on January 12, 2020, as our case study. We computed more than 4000 interferometric pairs from a dataset of 93 images acquired before, during, and after the eruption. Our results show that TDM can be applied to C-band data, despite the higher temporal decorrelation suffered by them. Our final probability map is consistent with the field evidence reported by the Philippines Institute of Volcanology and Seismology (PHILVOLCS) and the isopachs map reported in the literature. This new application provides a novel framework for the coherence exploitation of C-Band data. Also, this approach could be applied to detection and monitoring of other natural disasters. Fil: Naranjo Ariza, Camilo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales; Argentina Fil: Euillades, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; Argentina Fil: Toyos, Guillermo Pablo. Comision Nacional de Actividades Espaciales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Euillades, Leonardo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; Argentina Fil: Villarosa, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales; Argentina |
description |
Volcanic ash deposits affect buildings, vegetation, and population. After a volcanic eruption, it is critical to detect the areas affected by ash deposits to achieve an advisable management of the emergency. Optical sensors have been widely used to carry out this task, but they are limited by solar illumination and weather conditions. As an alternative, Synthetic Aperture Radar (SAR) data are not affected by those limitations. Recently, a Temporal Decorrelation Model (TDM) that uses SAR data was proposed for detecting and mapping ash deposits, but it has only been applied to L-band data. Today there is available a huge quantity of C-band data acquired by the Sentinel-1 constellation. In this study we applied the TDM to Sentinel-1 data in order to assess its performance for detecting volcanic ash deposits after an eruption. We selected the eruption of Taal volcano in The Philippines on January 12, 2020, as our case study. We computed more than 4000 interferometric pairs from a dataset of 93 images acquired before, during, and after the eruption. Our results show that TDM can be applied to C-band data, despite the higher temporal decorrelation suffered by them. Our final probability map is consistent with the field evidence reported by the Philippines Institute of Volcanology and Seismology (PHILVOLCS) and the isopachs map reported in the literature. This new application provides a novel framework for the coherence exploitation of C-Band data. Also, this approach could be applied to detection and monitoring of other natural disasters. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/219378 Naranjo Ariza, Camilo Andres; Euillades, Pablo Andrés; Toyos, Guillermo Pablo; Euillades, Leonardo Daniel; Villarosa, Gustavo; Application of a temporal decorrelation model using Sentinel-1 SAR data to Detect volcanic ash deposits related to the 2020 Taal volcano eruption; Elsevier; Remote Sensing Applications: Society and Environment; 31; 5-2023; 1-29 2352-9385 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/219378 |
identifier_str_mv |
Naranjo Ariza, Camilo Andres; Euillades, Pablo Andrés; Toyos, Guillermo Pablo; Euillades, Leonardo Daniel; Villarosa, Gustavo; Application of a temporal decorrelation model using Sentinel-1 SAR data to Detect volcanic ash deposits related to the 2020 Taal volcano eruption; Elsevier; Remote Sensing Applications: Society and Environment; 31; 5-2023; 1-29 2352-9385 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2352938523000733 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rsase.2023.100991 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613873742643200 |
score |
13.070432 |