Dynamical phase diagrams of a love capacity constrained prey–predator model

Autores
Simin, P. Toranj; Jafari, Gholam Reza; Ausloos, Marcel; Caiafa, César Federico; Caram, Leonidas Facundo; Sonubi, Adeyemi; Arcagni, Alberto; Stefani, Silvana
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
One interesting question in love relationships is: finally, what and when is the end of this love relationship? Using a prey–predator Verhulst–Lotka–Volterra (VLV) model we imply cooperation and competition tendency between people in order to describe a “love dilemma game”. We select the most simple but immediately most complex case for studying the set of nonlinear differential equations, i.e. that implying three persons, being at the same time prey and predator. We describe four different scenarios in such a love game containing either a one-way love or a love triangle. Our results show that it is hard to love more than one person simultaneously. Moreover, to love several people simultaneously is an unstable state. We find some condition in which persons tend to have a friendly relationship and love someone in spite of their antagonistic interaction. We demonstrate the dynamics by displaying flow diagrams.
Fil: Simin, P. Toranj. Shahid Beheshti University; Irán
Fil: Jafari, Gholam Reza. Shahid Beheshti University; Irán. Közép-európai Egyetem; Hungría
Fil: Ausloos, Marcel. University of Leicester; Reino Unido. Group Of Researchers For Applications Of Physics In Economy And Sociology; Bélgica
Fil: Caiafa, César Federico. Indiana University; Estados Unidos. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Caram, Leonidas Facundo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Sonubi, Adeyemi. Università degli Studi di Milano; Italia
Fil: Arcagni, Alberto. Università degli Studi di Milano; Italia
Fil: Stefani, Silvana. Università degli Studi di Milano; Italia
Materia
Dynamical Systems
Lotka-Volterra
Nonlinear dynamics
Prey-predator model
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/82393

id CONICETDig_a9455b62cd1d1608ce365880415f0de2
oai_identifier_str oai:ri.conicet.gov.ar:11336/82393
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dynamical phase diagrams of a love capacity constrained prey–predator modelSimin, P. ToranjJafari, Gholam RezaAusloos, MarcelCaiafa, César FedericoCaram, Leonidas FacundoSonubi, AdeyemiArcagni, AlbertoStefani, SilvanaDynamical SystemsLotka-VolterraNonlinear dynamicsPrey-predator modelhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1One interesting question in love relationships is: finally, what and when is the end of this love relationship? Using a prey–predator Verhulst–Lotka–Volterra (VLV) model we imply cooperation and competition tendency between people in order to describe a “love dilemma game”. We select the most simple but immediately most complex case for studying the set of nonlinear differential equations, i.e. that implying three persons, being at the same time prey and predator. We describe four different scenarios in such a love game containing either a one-way love or a love triangle. Our results show that it is hard to love more than one person simultaneously. Moreover, to love several people simultaneously is an unstable state. We find some condition in which persons tend to have a friendly relationship and love someone in spite of their antagonistic interaction. We demonstrate the dynamics by displaying flow diagrams.Fil: Simin, P. Toranj. Shahid Beheshti University; IránFil: Jafari, Gholam Reza. Shahid Beheshti University; Irán. Közép-európai Egyetem; HungríaFil: Ausloos, Marcel. University of Leicester; Reino Unido. Group Of Researchers For Applications Of Physics In Economy And Sociology; BélgicaFil: Caiafa, César Federico. Indiana University; Estados Unidos. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Caram, Leonidas Facundo. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Sonubi, Adeyemi. Università degli Studi di Milano; ItaliaFil: Arcagni, Alberto. Università degli Studi di Milano; ItaliaFil: Stefani, Silvana. Università degli Studi di Milano; ItaliaSpringer2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/82393Simin, P. Toranj; Jafari, Gholam Reza; Ausloos, Marcel; Caiafa, César Federico; Caram, Leonidas Facundo; et al.; Dynamical phase diagrams of a love capacity constrained prey–predator model; Springer; European Physical Journal B - Condensed Matter; 91; 2; 2-2018; 1-181434-6028CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1140/epjb/e2017-80531-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjb%2Fe2017-80531-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:44Zoai:ri.conicet.gov.ar:11336/82393instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:44.786CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dynamical phase diagrams of a love capacity constrained prey–predator model
title Dynamical phase diagrams of a love capacity constrained prey–predator model
spellingShingle Dynamical phase diagrams of a love capacity constrained prey–predator model
Simin, P. Toranj
Dynamical Systems
Lotka-Volterra
Nonlinear dynamics
Prey-predator model
title_short Dynamical phase diagrams of a love capacity constrained prey–predator model
title_full Dynamical phase diagrams of a love capacity constrained prey–predator model
title_fullStr Dynamical phase diagrams of a love capacity constrained prey–predator model
title_full_unstemmed Dynamical phase diagrams of a love capacity constrained prey–predator model
title_sort Dynamical phase diagrams of a love capacity constrained prey–predator model
dc.creator.none.fl_str_mv Simin, P. Toranj
Jafari, Gholam Reza
Ausloos, Marcel
Caiafa, César Federico
Caram, Leonidas Facundo
Sonubi, Adeyemi
Arcagni, Alberto
Stefani, Silvana
author Simin, P. Toranj
author_facet Simin, P. Toranj
Jafari, Gholam Reza
Ausloos, Marcel
Caiafa, César Federico
Caram, Leonidas Facundo
Sonubi, Adeyemi
Arcagni, Alberto
Stefani, Silvana
author_role author
author2 Jafari, Gholam Reza
Ausloos, Marcel
Caiafa, César Federico
Caram, Leonidas Facundo
Sonubi, Adeyemi
Arcagni, Alberto
Stefani, Silvana
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Dynamical Systems
Lotka-Volterra
Nonlinear dynamics
Prey-predator model
topic Dynamical Systems
Lotka-Volterra
Nonlinear dynamics
Prey-predator model
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv One interesting question in love relationships is: finally, what and when is the end of this love relationship? Using a prey–predator Verhulst–Lotka–Volterra (VLV) model we imply cooperation and competition tendency between people in order to describe a “love dilemma game”. We select the most simple but immediately most complex case for studying the set of nonlinear differential equations, i.e. that implying three persons, being at the same time prey and predator. We describe four different scenarios in such a love game containing either a one-way love or a love triangle. Our results show that it is hard to love more than one person simultaneously. Moreover, to love several people simultaneously is an unstable state. We find some condition in which persons tend to have a friendly relationship and love someone in spite of their antagonistic interaction. We demonstrate the dynamics by displaying flow diagrams.
Fil: Simin, P. Toranj. Shahid Beheshti University; Irán
Fil: Jafari, Gholam Reza. Shahid Beheshti University; Irán. Közép-európai Egyetem; Hungría
Fil: Ausloos, Marcel. University of Leicester; Reino Unido. Group Of Researchers For Applications Of Physics In Economy And Sociology; Bélgica
Fil: Caiafa, César Federico. Indiana University; Estados Unidos. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Caram, Leonidas Facundo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Sonubi, Adeyemi. Università degli Studi di Milano; Italia
Fil: Arcagni, Alberto. Università degli Studi di Milano; Italia
Fil: Stefani, Silvana. Università degli Studi di Milano; Italia
description One interesting question in love relationships is: finally, what and when is the end of this love relationship? Using a prey–predator Verhulst–Lotka–Volterra (VLV) model we imply cooperation and competition tendency between people in order to describe a “love dilemma game”. We select the most simple but immediately most complex case for studying the set of nonlinear differential equations, i.e. that implying three persons, being at the same time prey and predator. We describe four different scenarios in such a love game containing either a one-way love or a love triangle. Our results show that it is hard to love more than one person simultaneously. Moreover, to love several people simultaneously is an unstable state. We find some condition in which persons tend to have a friendly relationship and love someone in spite of their antagonistic interaction. We demonstrate the dynamics by displaying flow diagrams.
publishDate 2018
dc.date.none.fl_str_mv 2018-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/82393
Simin, P. Toranj; Jafari, Gholam Reza; Ausloos, Marcel; Caiafa, César Federico; Caram, Leonidas Facundo; et al.; Dynamical phase diagrams of a love capacity constrained prey–predator model; Springer; European Physical Journal B - Condensed Matter; 91; 2; 2-2018; 1-18
1434-6028
CONICET Digital
CONICET
url http://hdl.handle.net/11336/82393
identifier_str_mv Simin, P. Toranj; Jafari, Gholam Reza; Ausloos, Marcel; Caiafa, César Federico; Caram, Leonidas Facundo; et al.; Dynamical phase diagrams of a love capacity constrained prey–predator model; Springer; European Physical Journal B - Condensed Matter; 91; 2; 2-2018; 1-18
1434-6028
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1140/epjb/e2017-80531-7
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjb%2Fe2017-80531-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613115514191872
score 13.070432