Dynamical phase diagrams of a love capacity constrained prey–predator model
- Autores
- Simin, P. Toranj; Jafari, Gholam Reza; Ausloos, Marcel; Caiafa, César Federico; Caram, Leonidas Facundo; Sonubi, Adeyemi; Arcagni, Alberto; Stefani, Silvana
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- One interesting question in love relationships is: finally, what and when is the end of this love relationship? Using a prey–predator Verhulst–Lotka–Volterra (VLV) model we imply cooperation and competition tendency between people in order to describe a “love dilemma game”. We select the most simple but immediately most complex case for studying the set of nonlinear differential equations, i.e. that implying three persons, being at the same time prey and predator. We describe four different scenarios in such a love game containing either a one-way love or a love triangle. Our results show that it is hard to love more than one person simultaneously. Moreover, to love several people simultaneously is an unstable state. We find some condition in which persons tend to have a friendly relationship and love someone in spite of their antagonistic interaction. We demonstrate the dynamics by displaying flow diagrams.
Fil: Simin, P. Toranj. Shahid Beheshti University; Irán
Fil: Jafari, Gholam Reza. Shahid Beheshti University; Irán. Közép-európai Egyetem; Hungría
Fil: Ausloos, Marcel. University of Leicester; Reino Unido. Group Of Researchers For Applications Of Physics In Economy And Sociology; Bélgica
Fil: Caiafa, César Federico. Indiana University; Estados Unidos. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Caram, Leonidas Facundo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Sonubi, Adeyemi. Università degli Studi di Milano; Italia
Fil: Arcagni, Alberto. Università degli Studi di Milano; Italia
Fil: Stefani, Silvana. Università degli Studi di Milano; Italia - Materia
-
Dynamical Systems
Lotka-Volterra
Nonlinear dynamics
Prey-predator model - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/82393
Ver los metadatos del registro completo
id |
CONICETDig_a9455b62cd1d1608ce365880415f0de2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/82393 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dynamical phase diagrams of a love capacity constrained prey–predator modelSimin, P. ToranjJafari, Gholam RezaAusloos, MarcelCaiafa, César FedericoCaram, Leonidas FacundoSonubi, AdeyemiArcagni, AlbertoStefani, SilvanaDynamical SystemsLotka-VolterraNonlinear dynamicsPrey-predator modelhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1One interesting question in love relationships is: finally, what and when is the end of this love relationship? Using a prey–predator Verhulst–Lotka–Volterra (VLV) model we imply cooperation and competition tendency between people in order to describe a “love dilemma game”. We select the most simple but immediately most complex case for studying the set of nonlinear differential equations, i.e. that implying three persons, being at the same time prey and predator. We describe four different scenarios in such a love game containing either a one-way love or a love triangle. Our results show that it is hard to love more than one person simultaneously. Moreover, to love several people simultaneously is an unstable state. We find some condition in which persons tend to have a friendly relationship and love someone in spite of their antagonistic interaction. We demonstrate the dynamics by displaying flow diagrams.Fil: Simin, P. Toranj. Shahid Beheshti University; IránFil: Jafari, Gholam Reza. Shahid Beheshti University; Irán. Közép-európai Egyetem; HungríaFil: Ausloos, Marcel. University of Leicester; Reino Unido. Group Of Researchers For Applications Of Physics In Economy And Sociology; BélgicaFil: Caiafa, César Federico. Indiana University; Estados Unidos. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Caram, Leonidas Facundo. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Sonubi, Adeyemi. Università degli Studi di Milano; ItaliaFil: Arcagni, Alberto. Università degli Studi di Milano; ItaliaFil: Stefani, Silvana. Università degli Studi di Milano; ItaliaSpringer2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/82393Simin, P. Toranj; Jafari, Gholam Reza; Ausloos, Marcel; Caiafa, César Federico; Caram, Leonidas Facundo; et al.; Dynamical phase diagrams of a love capacity constrained prey–predator model; Springer; European Physical Journal B - Condensed Matter; 91; 2; 2-2018; 1-181434-6028CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1140/epjb/e2017-80531-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjb%2Fe2017-80531-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:44Zoai:ri.conicet.gov.ar:11336/82393instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:44.786CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dynamical phase diagrams of a love capacity constrained prey–predator model |
title |
Dynamical phase diagrams of a love capacity constrained prey–predator model |
spellingShingle |
Dynamical phase diagrams of a love capacity constrained prey–predator model Simin, P. Toranj Dynamical Systems Lotka-Volterra Nonlinear dynamics Prey-predator model |
title_short |
Dynamical phase diagrams of a love capacity constrained prey–predator model |
title_full |
Dynamical phase diagrams of a love capacity constrained prey–predator model |
title_fullStr |
Dynamical phase diagrams of a love capacity constrained prey–predator model |
title_full_unstemmed |
Dynamical phase diagrams of a love capacity constrained prey–predator model |
title_sort |
Dynamical phase diagrams of a love capacity constrained prey–predator model |
dc.creator.none.fl_str_mv |
Simin, P. Toranj Jafari, Gholam Reza Ausloos, Marcel Caiafa, César Federico Caram, Leonidas Facundo Sonubi, Adeyemi Arcagni, Alberto Stefani, Silvana |
author |
Simin, P. Toranj |
author_facet |
Simin, P. Toranj Jafari, Gholam Reza Ausloos, Marcel Caiafa, César Federico Caram, Leonidas Facundo Sonubi, Adeyemi Arcagni, Alberto Stefani, Silvana |
author_role |
author |
author2 |
Jafari, Gholam Reza Ausloos, Marcel Caiafa, César Federico Caram, Leonidas Facundo Sonubi, Adeyemi Arcagni, Alberto Stefani, Silvana |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Dynamical Systems Lotka-Volterra Nonlinear dynamics Prey-predator model |
topic |
Dynamical Systems Lotka-Volterra Nonlinear dynamics Prey-predator model |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
One interesting question in love relationships is: finally, what and when is the end of this love relationship? Using a prey–predator Verhulst–Lotka–Volterra (VLV) model we imply cooperation and competition tendency between people in order to describe a “love dilemma game”. We select the most simple but immediately most complex case for studying the set of nonlinear differential equations, i.e. that implying three persons, being at the same time prey and predator. We describe four different scenarios in such a love game containing either a one-way love or a love triangle. Our results show that it is hard to love more than one person simultaneously. Moreover, to love several people simultaneously is an unstable state. We find some condition in which persons tend to have a friendly relationship and love someone in spite of their antagonistic interaction. We demonstrate the dynamics by displaying flow diagrams. Fil: Simin, P. Toranj. Shahid Beheshti University; Irán Fil: Jafari, Gholam Reza. Shahid Beheshti University; Irán. Közép-európai Egyetem; Hungría Fil: Ausloos, Marcel. University of Leicester; Reino Unido. Group Of Researchers For Applications Of Physics In Economy And Sociology; Bélgica Fil: Caiafa, César Federico. Indiana University; Estados Unidos. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina Fil: Caram, Leonidas Facundo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Sonubi, Adeyemi. Università degli Studi di Milano; Italia Fil: Arcagni, Alberto. Università degli Studi di Milano; Italia Fil: Stefani, Silvana. Università degli Studi di Milano; Italia |
description |
One interesting question in love relationships is: finally, what and when is the end of this love relationship? Using a prey–predator Verhulst–Lotka–Volterra (VLV) model we imply cooperation and competition tendency between people in order to describe a “love dilemma game”. We select the most simple but immediately most complex case for studying the set of nonlinear differential equations, i.e. that implying three persons, being at the same time prey and predator. We describe four different scenarios in such a love game containing either a one-way love or a love triangle. Our results show that it is hard to love more than one person simultaneously. Moreover, to love several people simultaneously is an unstable state. We find some condition in which persons tend to have a friendly relationship and love someone in spite of their antagonistic interaction. We demonstrate the dynamics by displaying flow diagrams. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/82393 Simin, P. Toranj; Jafari, Gholam Reza; Ausloos, Marcel; Caiafa, César Federico; Caram, Leonidas Facundo; et al.; Dynamical phase diagrams of a love capacity constrained prey–predator model; Springer; European Physical Journal B - Condensed Matter; 91; 2; 2-2018; 1-18 1434-6028 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/82393 |
identifier_str_mv |
Simin, P. Toranj; Jafari, Gholam Reza; Ausloos, Marcel; Caiafa, César Federico; Caram, Leonidas Facundo; et al.; Dynamical phase diagrams of a love capacity constrained prey–predator model; Springer; European Physical Journal B - Condensed Matter; 91; 2; 2-2018; 1-18 1434-6028 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1140/epjb/e2017-80531-7 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjb%2Fe2017-80531-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613115514191872 |
score |
13.070432 |