Probing the Mechanical Properties of Porous Nanoshells by Nanoindentation

Autores
Valencia, Felipe J.; Aurora, Viviana; Ramirez, Max; Ruestes, Carlos Javier; Prada, Alejandro; Varas, Alejandro; Rogan, José
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this contribution, we present a study of the mechanical properties of porous nanoshells measured with a nanoindentation technique. Porous nanoshells with hollow designs can present attractive mechanical properties, as observed in hollow nanoshells, but coupled with the unique mechanical behavior of porous materials. Porous nanoshells display mechanical properties that are dependent on shell porosity. Our results show that, under smaller porosity values, deformation is closely related to the one observed for polycrystalline and single-crystalline nanoshells involving dislocation activity. When porosity in the nanoparticle is increased, plastic deformation was mediated by grain boundary sliding instead of dislocation activity. Additionally, porosity suppresses dislocation activity and decreases nanoparticle strength, but allows for significant strain hardening under strains as high as 0.4. On the other hand, Young’s modulus decreases with the increase in nanoshell porosity, in agreement with the established theories of porous materials. However, we found no quantitative agreement between conventional models applied to obtain the Young’s modulus of porous materials.
Fil: Valencia, Felipe J.. Universidad Catolica de Maule; Chile
Fil: Aurora, Viviana. Universidad de Chile; Chile
Fil: Ramirez, Max. Universidad de Chile; Chile
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Fil: Prada, Alejandro. Universidad Catolica de Maule; Chile
Fil: Varas, Alejandro. Universidad de Chile; Chile
Fil: Rogan, José. Universidad de Chile; Chile
Materia
porous nanoshells
molecular dynamics
porous materials
nanoindentation
plasticity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/235314

id CONICETDig_a88310f89a18290ff8a1d9a8a1a34076
oai_identifier_str oai:ri.conicet.gov.ar:11336/235314
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Probing the Mechanical Properties of Porous Nanoshells by NanoindentationValencia, Felipe J.Aurora, VivianaRamirez, MaxRuestes, Carlos JavierPrada, AlejandroVaras, AlejandroRogan, Joséporous nanoshellsmolecular dynamicsporous materialsnanoindentationplasticityhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2In this contribution, we present a study of the mechanical properties of porous nanoshells measured with a nanoindentation technique. Porous nanoshells with hollow designs can present attractive mechanical properties, as observed in hollow nanoshells, but coupled with the unique mechanical behavior of porous materials. Porous nanoshells display mechanical properties that are dependent on shell porosity. Our results show that, under smaller porosity values, deformation is closely related to the one observed for polycrystalline and single-crystalline nanoshells involving dislocation activity. When porosity in the nanoparticle is increased, plastic deformation was mediated by grain boundary sliding instead of dislocation activity. Additionally, porosity suppresses dislocation activity and decreases nanoparticle strength, but allows for significant strain hardening under strains as high as 0.4. On the other hand, Young’s modulus decreases with the increase in nanoshell porosity, in agreement with the established theories of porous materials. However, we found no quantitative agreement between conventional models applied to obtain the Young’s modulus of porous materials.Fil: Valencia, Felipe J.. Universidad Catolica de Maule; ChileFil: Aurora, Viviana. Universidad de Chile; ChileFil: Ramirez, Max. Universidad de Chile; ChileFil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: Prada, Alejandro. Universidad Catolica de Maule; ChileFil: Varas, Alejandro. Universidad de Chile; ChileFil: Rogan, José. Universidad de Chile; ChileMDPI2022-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/235314Valencia, Felipe J.; Aurora, Viviana; Ramirez, Max; Ruestes, Carlos Javier; Prada, Alejandro; et al.; Probing the Mechanical Properties of Porous Nanoshells by Nanoindentation; MDPI; Nanomaterials; 12; 12; 6-2022; 1-152079-4991CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/nano12122000info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:53Zoai:ri.conicet.gov.ar:11336/235314instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:54.12CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Probing the Mechanical Properties of Porous Nanoshells by Nanoindentation
title Probing the Mechanical Properties of Porous Nanoshells by Nanoindentation
spellingShingle Probing the Mechanical Properties of Porous Nanoshells by Nanoindentation
Valencia, Felipe J.
porous nanoshells
molecular dynamics
porous materials
nanoindentation
plasticity
title_short Probing the Mechanical Properties of Porous Nanoshells by Nanoindentation
title_full Probing the Mechanical Properties of Porous Nanoshells by Nanoindentation
title_fullStr Probing the Mechanical Properties of Porous Nanoshells by Nanoindentation
title_full_unstemmed Probing the Mechanical Properties of Porous Nanoshells by Nanoindentation
title_sort Probing the Mechanical Properties of Porous Nanoshells by Nanoindentation
dc.creator.none.fl_str_mv Valencia, Felipe J.
Aurora, Viviana
Ramirez, Max
Ruestes, Carlos Javier
Prada, Alejandro
Varas, Alejandro
Rogan, José
author Valencia, Felipe J.
author_facet Valencia, Felipe J.
Aurora, Viviana
Ramirez, Max
Ruestes, Carlos Javier
Prada, Alejandro
Varas, Alejandro
Rogan, José
author_role author
author2 Aurora, Viviana
Ramirez, Max
Ruestes, Carlos Javier
Prada, Alejandro
Varas, Alejandro
Rogan, José
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv porous nanoshells
molecular dynamics
porous materials
nanoindentation
plasticity
topic porous nanoshells
molecular dynamics
porous materials
nanoindentation
plasticity
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this contribution, we present a study of the mechanical properties of porous nanoshells measured with a nanoindentation technique. Porous nanoshells with hollow designs can present attractive mechanical properties, as observed in hollow nanoshells, but coupled with the unique mechanical behavior of porous materials. Porous nanoshells display mechanical properties that are dependent on shell porosity. Our results show that, under smaller porosity values, deformation is closely related to the one observed for polycrystalline and single-crystalline nanoshells involving dislocation activity. When porosity in the nanoparticle is increased, plastic deformation was mediated by grain boundary sliding instead of dislocation activity. Additionally, porosity suppresses dislocation activity and decreases nanoparticle strength, but allows for significant strain hardening under strains as high as 0.4. On the other hand, Young’s modulus decreases with the increase in nanoshell porosity, in agreement with the established theories of porous materials. However, we found no quantitative agreement between conventional models applied to obtain the Young’s modulus of porous materials.
Fil: Valencia, Felipe J.. Universidad Catolica de Maule; Chile
Fil: Aurora, Viviana. Universidad de Chile; Chile
Fil: Ramirez, Max. Universidad de Chile; Chile
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Fil: Prada, Alejandro. Universidad Catolica de Maule; Chile
Fil: Varas, Alejandro. Universidad de Chile; Chile
Fil: Rogan, José. Universidad de Chile; Chile
description In this contribution, we present a study of the mechanical properties of porous nanoshells measured with a nanoindentation technique. Porous nanoshells with hollow designs can present attractive mechanical properties, as observed in hollow nanoshells, but coupled with the unique mechanical behavior of porous materials. Porous nanoshells display mechanical properties that are dependent on shell porosity. Our results show that, under smaller porosity values, deformation is closely related to the one observed for polycrystalline and single-crystalline nanoshells involving dislocation activity. When porosity in the nanoparticle is increased, plastic deformation was mediated by grain boundary sliding instead of dislocation activity. Additionally, porosity suppresses dislocation activity and decreases nanoparticle strength, but allows for significant strain hardening under strains as high as 0.4. On the other hand, Young’s modulus decreases with the increase in nanoshell porosity, in agreement with the established theories of porous materials. However, we found no quantitative agreement between conventional models applied to obtain the Young’s modulus of porous materials.
publishDate 2022
dc.date.none.fl_str_mv 2022-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/235314
Valencia, Felipe J.; Aurora, Viviana; Ramirez, Max; Ruestes, Carlos Javier; Prada, Alejandro; et al.; Probing the Mechanical Properties of Porous Nanoshells by Nanoindentation; MDPI; Nanomaterials; 12; 12; 6-2022; 1-15
2079-4991
CONICET Digital
CONICET
url http://hdl.handle.net/11336/235314
identifier_str_mv Valencia, Felipe J.; Aurora, Viviana; Ramirez, Max; Ruestes, Carlos Javier; Prada, Alejandro; et al.; Probing the Mechanical Properties of Porous Nanoshells by Nanoindentation; MDPI; Nanomaterials; 12; 12; 6-2022; 1-15
2079-4991
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/nano12122000
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268760243699712
score 13.13397