Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage

Autores
Gosalawit Utke, Rapee; Milanese, Chiara; Javadian, Payam; Jepsen, Julian; Laipple, Daniel; Karmi, Fahim; Puszkiel, Julián Atilio; Jensen, Torben; Marini, Amedeo; Klassen, Thomas; Dornheim, Martin
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nanoconfinement of 2LiBH4–MgH2–TiCl3 in resorcinol–formaldehyde carbon aerogel scaffold (RF–CAS) for reversible hydrogen storage applications is proposed. RF–CAS is encapsulated with approximately 1.6 wt. % TiCl3 by solution impregnation technique, and it is further nanoconfined with bulk 2LiBH4–MgH2 via melt infiltration. Faster dehydrogenation kinetics is obtained after TiCl3 impregnation, for example, nanoconfined 2LiBH4–MgH2–TiCl3 requires ∼1 and 4.5 h, respectively, to release 95% of the total hydrogen content during the 1st and 2nd cycles, while nanoconfined 2LiBH4–MgH2 (∼2.5 and 7 h, respectively) and bulk material (∼23 and 22 h, respectively) take considerably longer. Moreover, 95–98.6% of the theoretical H2 storage capacity (3.6–3.75 wt. % H2) is reproduced after four hydrogen release and uptake cycles of the nanoconfined 2LiBH4–MgH2–TiCl3. The reversibility of this hydrogen storage material is confirmed by the formation of LiBH4 and MgH2 after rehydrogenation using FTIR and SR-PXD techniques, respectively.
Fil: Gosalawit Utke, Rapee. Helmholtz-Zentrum Geesthacht; Alemania. Suranaree University of Technology; Tailandia
Fil: Milanese, Chiara. Universita degli Studi di Pavia; Italia
Fil: Javadian, Payam. University Aarhus; Dinamarca
Fil: Jepsen, Julian. Helmholtz-Zentrum Geesthacht; Alemania
Fil: Laipple, Daniel. Helmholtz-Zentrum Geesthacht; Alemania
Fil: Karmi, Fahim. Helmholtz-Zentrum Geesthacht; Alemania
Fil: Puszkiel, Julián Atilio. Helmholtz-Zentrum Geesthacht; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Jensen, Torben. University Aarhus; Dinamarca
Fil: Marini, Amedeo. Universita degli Studi di Pavia; Italia
Fil: Klassen, Thomas. Helmholtz-Zentrum Geesthacht; Alemania
Fil: Dornheim, Martin. Helmholtz-Zentrum Geesthacht; Alemania
Materia
Nanoconfinement
Carbon Aerogel Scaffold
Hydrogen Storage
Lithium Borohydride
Magnesium Hydride
Titanium Trichloride
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17686

id CONICETDig_a868424314e43e6867254fa508a9c582
oai_identifier_str oai:ri.conicet.gov.ar:11336/17686
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storageGosalawit Utke, RapeeMilanese, ChiaraJavadian, PayamJepsen, JulianLaipple, DanielKarmi, FahimPuszkiel, Julián AtilioJensen, TorbenMarini, AmedeoKlassen, ThomasDornheim, MartinNanoconfinementCarbon Aerogel ScaffoldHydrogen StorageLithium BorohydrideMagnesium HydrideTitanium Trichloridehttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Nanoconfinement of 2LiBH4–MgH2–TiCl3 in resorcinol–formaldehyde carbon aerogel scaffold (RF–CAS) for reversible hydrogen storage applications is proposed. RF–CAS is encapsulated with approximately 1.6 wt. % TiCl3 by solution impregnation technique, and it is further nanoconfined with bulk 2LiBH4–MgH2 via melt infiltration. Faster dehydrogenation kinetics is obtained after TiCl3 impregnation, for example, nanoconfined 2LiBH4–MgH2–TiCl3 requires ∼1 and 4.5 h, respectively, to release 95% of the total hydrogen content during the 1st and 2nd cycles, while nanoconfined 2LiBH4–MgH2 (∼2.5 and 7 h, respectively) and bulk material (∼23 and 22 h, respectively) take considerably longer. Moreover, 95–98.6% of the theoretical H2 storage capacity (3.6–3.75 wt. % H2) is reproduced after four hydrogen release and uptake cycles of the nanoconfined 2LiBH4–MgH2–TiCl3. The reversibility of this hydrogen storage material is confirmed by the formation of LiBH4 and MgH2 after rehydrogenation using FTIR and SR-PXD techniques, respectively.Fil: Gosalawit Utke, Rapee. Helmholtz-Zentrum Geesthacht; Alemania. Suranaree University of Technology; TailandiaFil: Milanese, Chiara. Universita degli Studi di Pavia; ItaliaFil: Javadian, Payam. University Aarhus; DinamarcaFil: Jepsen, Julian. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Laipple, Daniel. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Karmi, Fahim. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Puszkiel, Julián Atilio. Helmholtz-Zentrum Geesthacht; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jensen, Torben. University Aarhus; DinamarcaFil: Marini, Amedeo. Universita degli Studi di Pavia; ItaliaFil: Klassen, Thomas. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Dornheim, Martin. Helmholtz-Zentrum Geesthacht; AlemaniaElsevier2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17686Gosalawit Utke, Rapee; Milanese, Chiara; Javadian, Payam; Jepsen, Julian; Laipple, Daniel; et al.; Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage; Elsevier; International Journal Of Hydrogen Energy; 38; 8; 3-2013; 3275-32820360-3199enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2012.12.123info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0360319913000050info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:37Zoai:ri.conicet.gov.ar:11336/17686instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:37.304CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage
title Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage
spellingShingle Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage
Gosalawit Utke, Rapee
Nanoconfinement
Carbon Aerogel Scaffold
Hydrogen Storage
Lithium Borohydride
Magnesium Hydride
Titanium Trichloride
title_short Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage
title_full Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage
title_fullStr Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage
title_full_unstemmed Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage
title_sort Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage
dc.creator.none.fl_str_mv Gosalawit Utke, Rapee
Milanese, Chiara
Javadian, Payam
Jepsen, Julian
Laipple, Daniel
Karmi, Fahim
Puszkiel, Julián Atilio
Jensen, Torben
Marini, Amedeo
Klassen, Thomas
Dornheim, Martin
author Gosalawit Utke, Rapee
author_facet Gosalawit Utke, Rapee
Milanese, Chiara
Javadian, Payam
Jepsen, Julian
Laipple, Daniel
Karmi, Fahim
Puszkiel, Julián Atilio
Jensen, Torben
Marini, Amedeo
Klassen, Thomas
Dornheim, Martin
author_role author
author2 Milanese, Chiara
Javadian, Payam
Jepsen, Julian
Laipple, Daniel
Karmi, Fahim
Puszkiel, Julián Atilio
Jensen, Torben
Marini, Amedeo
Klassen, Thomas
Dornheim, Martin
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Nanoconfinement
Carbon Aerogel Scaffold
Hydrogen Storage
Lithium Borohydride
Magnesium Hydride
Titanium Trichloride
topic Nanoconfinement
Carbon Aerogel Scaffold
Hydrogen Storage
Lithium Borohydride
Magnesium Hydride
Titanium Trichloride
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Nanoconfinement of 2LiBH4–MgH2–TiCl3 in resorcinol–formaldehyde carbon aerogel scaffold (RF–CAS) for reversible hydrogen storage applications is proposed. RF–CAS is encapsulated with approximately 1.6 wt. % TiCl3 by solution impregnation technique, and it is further nanoconfined with bulk 2LiBH4–MgH2 via melt infiltration. Faster dehydrogenation kinetics is obtained after TiCl3 impregnation, for example, nanoconfined 2LiBH4–MgH2–TiCl3 requires ∼1 and 4.5 h, respectively, to release 95% of the total hydrogen content during the 1st and 2nd cycles, while nanoconfined 2LiBH4–MgH2 (∼2.5 and 7 h, respectively) and bulk material (∼23 and 22 h, respectively) take considerably longer. Moreover, 95–98.6% of the theoretical H2 storage capacity (3.6–3.75 wt. % H2) is reproduced after four hydrogen release and uptake cycles of the nanoconfined 2LiBH4–MgH2–TiCl3. The reversibility of this hydrogen storage material is confirmed by the formation of LiBH4 and MgH2 after rehydrogenation using FTIR and SR-PXD techniques, respectively.
Fil: Gosalawit Utke, Rapee. Helmholtz-Zentrum Geesthacht; Alemania. Suranaree University of Technology; Tailandia
Fil: Milanese, Chiara. Universita degli Studi di Pavia; Italia
Fil: Javadian, Payam. University Aarhus; Dinamarca
Fil: Jepsen, Julian. Helmholtz-Zentrum Geesthacht; Alemania
Fil: Laipple, Daniel. Helmholtz-Zentrum Geesthacht; Alemania
Fil: Karmi, Fahim. Helmholtz-Zentrum Geesthacht; Alemania
Fil: Puszkiel, Julián Atilio. Helmholtz-Zentrum Geesthacht; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Jensen, Torben. University Aarhus; Dinamarca
Fil: Marini, Amedeo. Universita degli Studi di Pavia; Italia
Fil: Klassen, Thomas. Helmholtz-Zentrum Geesthacht; Alemania
Fil: Dornheim, Martin. Helmholtz-Zentrum Geesthacht; Alemania
description Nanoconfinement of 2LiBH4–MgH2–TiCl3 in resorcinol–formaldehyde carbon aerogel scaffold (RF–CAS) for reversible hydrogen storage applications is proposed. RF–CAS is encapsulated with approximately 1.6 wt. % TiCl3 by solution impregnation technique, and it is further nanoconfined with bulk 2LiBH4–MgH2 via melt infiltration. Faster dehydrogenation kinetics is obtained after TiCl3 impregnation, for example, nanoconfined 2LiBH4–MgH2–TiCl3 requires ∼1 and 4.5 h, respectively, to release 95% of the total hydrogen content during the 1st and 2nd cycles, while nanoconfined 2LiBH4–MgH2 (∼2.5 and 7 h, respectively) and bulk material (∼23 and 22 h, respectively) take considerably longer. Moreover, 95–98.6% of the theoretical H2 storage capacity (3.6–3.75 wt. % H2) is reproduced after four hydrogen release and uptake cycles of the nanoconfined 2LiBH4–MgH2–TiCl3. The reversibility of this hydrogen storage material is confirmed by the formation of LiBH4 and MgH2 after rehydrogenation using FTIR and SR-PXD techniques, respectively.
publishDate 2013
dc.date.none.fl_str_mv 2013-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17686
Gosalawit Utke, Rapee; Milanese, Chiara; Javadian, Payam; Jepsen, Julian; Laipple, Daniel; et al.; Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage; Elsevier; International Journal Of Hydrogen Energy; 38; 8; 3-2013; 3275-3282
0360-3199
url http://hdl.handle.net/11336/17686
identifier_str_mv Gosalawit Utke, Rapee; Milanese, Chiara; Javadian, Payam; Jepsen, Julian; Laipple, Daniel; et al.; Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage; Elsevier; International Journal Of Hydrogen Energy; 38; 8; 3-2013; 3275-3282
0360-3199
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2012.12.123
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0360319913000050
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613722360774656
score 13.070432