Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage
- Autores
- Gosalawit Utke, Rapee; Milanese, Chiara; Javadian, Payam; Jepsen, Julian; Laipple, Daniel; Karmi, Fahim; Puszkiel, Julián Atilio; Jensen, Torben; Marini, Amedeo; Klassen, Thomas; Dornheim, Martin
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nanoconfinement of 2LiBH4–MgH2–TiCl3 in resorcinol–formaldehyde carbon aerogel scaffold (RF–CAS) for reversible hydrogen storage applications is proposed. RF–CAS is encapsulated with approximately 1.6 wt. % TiCl3 by solution impregnation technique, and it is further nanoconfined with bulk 2LiBH4–MgH2 via melt infiltration. Faster dehydrogenation kinetics is obtained after TiCl3 impregnation, for example, nanoconfined 2LiBH4–MgH2–TiCl3 requires ∼1 and 4.5 h, respectively, to release 95% of the total hydrogen content during the 1st and 2nd cycles, while nanoconfined 2LiBH4–MgH2 (∼2.5 and 7 h, respectively) and bulk material (∼23 and 22 h, respectively) take considerably longer. Moreover, 95–98.6% of the theoretical H2 storage capacity (3.6–3.75 wt. % H2) is reproduced after four hydrogen release and uptake cycles of the nanoconfined 2LiBH4–MgH2–TiCl3. The reversibility of this hydrogen storage material is confirmed by the formation of LiBH4 and MgH2 after rehydrogenation using FTIR and SR-PXD techniques, respectively.
Fil: Gosalawit Utke, Rapee. Helmholtz-Zentrum Geesthacht; Alemania. Suranaree University of Technology; Tailandia
Fil: Milanese, Chiara. Universita degli Studi di Pavia; Italia
Fil: Javadian, Payam. University Aarhus; Dinamarca
Fil: Jepsen, Julian. Helmholtz-Zentrum Geesthacht; Alemania
Fil: Laipple, Daniel. Helmholtz-Zentrum Geesthacht; Alemania
Fil: Karmi, Fahim. Helmholtz-Zentrum Geesthacht; Alemania
Fil: Puszkiel, Julián Atilio. Helmholtz-Zentrum Geesthacht; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Jensen, Torben. University Aarhus; Dinamarca
Fil: Marini, Amedeo. Universita degli Studi di Pavia; Italia
Fil: Klassen, Thomas. Helmholtz-Zentrum Geesthacht; Alemania
Fil: Dornheim, Martin. Helmholtz-Zentrum Geesthacht; Alemania - Materia
-
Nanoconfinement
Carbon Aerogel Scaffold
Hydrogen Storage
Lithium Borohydride
Magnesium Hydride
Titanium Trichloride - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17686
Ver los metadatos del registro completo
id |
CONICETDig_a868424314e43e6867254fa508a9c582 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17686 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storageGosalawit Utke, RapeeMilanese, ChiaraJavadian, PayamJepsen, JulianLaipple, DanielKarmi, FahimPuszkiel, Julián AtilioJensen, TorbenMarini, AmedeoKlassen, ThomasDornheim, MartinNanoconfinementCarbon Aerogel ScaffoldHydrogen StorageLithium BorohydrideMagnesium HydrideTitanium Trichloridehttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Nanoconfinement of 2LiBH4–MgH2–TiCl3 in resorcinol–formaldehyde carbon aerogel scaffold (RF–CAS) for reversible hydrogen storage applications is proposed. RF–CAS is encapsulated with approximately 1.6 wt. % TiCl3 by solution impregnation technique, and it is further nanoconfined with bulk 2LiBH4–MgH2 via melt infiltration. Faster dehydrogenation kinetics is obtained after TiCl3 impregnation, for example, nanoconfined 2LiBH4–MgH2–TiCl3 requires ∼1 and 4.5 h, respectively, to release 95% of the total hydrogen content during the 1st and 2nd cycles, while nanoconfined 2LiBH4–MgH2 (∼2.5 and 7 h, respectively) and bulk material (∼23 and 22 h, respectively) take considerably longer. Moreover, 95–98.6% of the theoretical H2 storage capacity (3.6–3.75 wt. % H2) is reproduced after four hydrogen release and uptake cycles of the nanoconfined 2LiBH4–MgH2–TiCl3. The reversibility of this hydrogen storage material is confirmed by the formation of LiBH4 and MgH2 after rehydrogenation using FTIR and SR-PXD techniques, respectively.Fil: Gosalawit Utke, Rapee. Helmholtz-Zentrum Geesthacht; Alemania. Suranaree University of Technology; TailandiaFil: Milanese, Chiara. Universita degli Studi di Pavia; ItaliaFil: Javadian, Payam. University Aarhus; DinamarcaFil: Jepsen, Julian. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Laipple, Daniel. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Karmi, Fahim. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Puszkiel, Julián Atilio. Helmholtz-Zentrum Geesthacht; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jensen, Torben. University Aarhus; DinamarcaFil: Marini, Amedeo. Universita degli Studi di Pavia; ItaliaFil: Klassen, Thomas. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Dornheim, Martin. Helmholtz-Zentrum Geesthacht; AlemaniaElsevier2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17686Gosalawit Utke, Rapee; Milanese, Chiara; Javadian, Payam; Jepsen, Julian; Laipple, Daniel; et al.; Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage; Elsevier; International Journal Of Hydrogen Energy; 38; 8; 3-2013; 3275-32820360-3199enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2012.12.123info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0360319913000050info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:37Zoai:ri.conicet.gov.ar:11336/17686instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:37.304CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage |
title |
Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage |
spellingShingle |
Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage Gosalawit Utke, Rapee Nanoconfinement Carbon Aerogel Scaffold Hydrogen Storage Lithium Borohydride Magnesium Hydride Titanium Trichloride |
title_short |
Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage |
title_full |
Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage |
title_fullStr |
Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage |
title_full_unstemmed |
Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage |
title_sort |
Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage |
dc.creator.none.fl_str_mv |
Gosalawit Utke, Rapee Milanese, Chiara Javadian, Payam Jepsen, Julian Laipple, Daniel Karmi, Fahim Puszkiel, Julián Atilio Jensen, Torben Marini, Amedeo Klassen, Thomas Dornheim, Martin |
author |
Gosalawit Utke, Rapee |
author_facet |
Gosalawit Utke, Rapee Milanese, Chiara Javadian, Payam Jepsen, Julian Laipple, Daniel Karmi, Fahim Puszkiel, Julián Atilio Jensen, Torben Marini, Amedeo Klassen, Thomas Dornheim, Martin |
author_role |
author |
author2 |
Milanese, Chiara Javadian, Payam Jepsen, Julian Laipple, Daniel Karmi, Fahim Puszkiel, Julián Atilio Jensen, Torben Marini, Amedeo Klassen, Thomas Dornheim, Martin |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Nanoconfinement Carbon Aerogel Scaffold Hydrogen Storage Lithium Borohydride Magnesium Hydride Titanium Trichloride |
topic |
Nanoconfinement Carbon Aerogel Scaffold Hydrogen Storage Lithium Borohydride Magnesium Hydride Titanium Trichloride |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Nanoconfinement of 2LiBH4–MgH2–TiCl3 in resorcinol–formaldehyde carbon aerogel scaffold (RF–CAS) for reversible hydrogen storage applications is proposed. RF–CAS is encapsulated with approximately 1.6 wt. % TiCl3 by solution impregnation technique, and it is further nanoconfined with bulk 2LiBH4–MgH2 via melt infiltration. Faster dehydrogenation kinetics is obtained after TiCl3 impregnation, for example, nanoconfined 2LiBH4–MgH2–TiCl3 requires ∼1 and 4.5 h, respectively, to release 95% of the total hydrogen content during the 1st and 2nd cycles, while nanoconfined 2LiBH4–MgH2 (∼2.5 and 7 h, respectively) and bulk material (∼23 and 22 h, respectively) take considerably longer. Moreover, 95–98.6% of the theoretical H2 storage capacity (3.6–3.75 wt. % H2) is reproduced after four hydrogen release and uptake cycles of the nanoconfined 2LiBH4–MgH2–TiCl3. The reversibility of this hydrogen storage material is confirmed by the formation of LiBH4 and MgH2 after rehydrogenation using FTIR and SR-PXD techniques, respectively. Fil: Gosalawit Utke, Rapee. Helmholtz-Zentrum Geesthacht; Alemania. Suranaree University of Technology; Tailandia Fil: Milanese, Chiara. Universita degli Studi di Pavia; Italia Fil: Javadian, Payam. University Aarhus; Dinamarca Fil: Jepsen, Julian. Helmholtz-Zentrum Geesthacht; Alemania Fil: Laipple, Daniel. Helmholtz-Zentrum Geesthacht; Alemania Fil: Karmi, Fahim. Helmholtz-Zentrum Geesthacht; Alemania Fil: Puszkiel, Julián Atilio. Helmholtz-Zentrum Geesthacht; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Jensen, Torben. University Aarhus; Dinamarca Fil: Marini, Amedeo. Universita degli Studi di Pavia; Italia Fil: Klassen, Thomas. Helmholtz-Zentrum Geesthacht; Alemania Fil: Dornheim, Martin. Helmholtz-Zentrum Geesthacht; Alemania |
description |
Nanoconfinement of 2LiBH4–MgH2–TiCl3 in resorcinol–formaldehyde carbon aerogel scaffold (RF–CAS) for reversible hydrogen storage applications is proposed. RF–CAS is encapsulated with approximately 1.6 wt. % TiCl3 by solution impregnation technique, and it is further nanoconfined with bulk 2LiBH4–MgH2 via melt infiltration. Faster dehydrogenation kinetics is obtained after TiCl3 impregnation, for example, nanoconfined 2LiBH4–MgH2–TiCl3 requires ∼1 and 4.5 h, respectively, to release 95% of the total hydrogen content during the 1st and 2nd cycles, while nanoconfined 2LiBH4–MgH2 (∼2.5 and 7 h, respectively) and bulk material (∼23 and 22 h, respectively) take considerably longer. Moreover, 95–98.6% of the theoretical H2 storage capacity (3.6–3.75 wt. % H2) is reproduced after four hydrogen release and uptake cycles of the nanoconfined 2LiBH4–MgH2–TiCl3. The reversibility of this hydrogen storage material is confirmed by the formation of LiBH4 and MgH2 after rehydrogenation using FTIR and SR-PXD techniques, respectively. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17686 Gosalawit Utke, Rapee; Milanese, Chiara; Javadian, Payam; Jepsen, Julian; Laipple, Daniel; et al.; Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage; Elsevier; International Journal Of Hydrogen Energy; 38; 8; 3-2013; 3275-3282 0360-3199 |
url |
http://hdl.handle.net/11336/17686 |
identifier_str_mv |
Gosalawit Utke, Rapee; Milanese, Chiara; Javadian, Payam; Jepsen, Julian; Laipple, Daniel; et al.; Nanoconfined 2LiBH4eMgH2eTiCl3 in carbon aerogel scaffold for reversible hydrogen storage; Elsevier; International Journal Of Hydrogen Energy; 38; 8; 3-2013; 3275-3282 0360-3199 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2012.12.123 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0360319913000050 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613722360774656 |
score |
13.070432 |