Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions
- Autores
- Prudkin Silva, Cecilia Raquel; Pérez, Carlos E.; Martínez, Karina Dafne; Barroso da silva, Fernando
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Protein−polysaccharide complexes constructed via self-assembly methods are often used to develop novel 17 biomaterials for a wide range of applications in biomedicine, food, and biotechnology. The objective of this work was to 18 investigate theoretically and to demonstrate via constant-pH Monte Carlo simulations that the complexation phenomenon 19 between insulin (INS) and the cationic polyelectrolyte chitosan (CS) is mainly driven by an electrostatic mechanism. 20 Experimental results obtained from FTIR spectra and ζ-potential determinations allowed us to complement the conclusions. 21 The characteristic absorption bands for the complexes could be assigned to a combination of signals from CS amide I and INS 22 amide II. The second peak corresponds to the interaction between the polymer and the protein at the level of amide II. INS− 23 CS complexation processes not expected when INS is in its monomeric form, but for both tetrameric and hexameric forms, 24 incipient complexation due to charge regulation mechanism took place at pH 5. The complexation range was observed to be 5.5 25 < pH < 6.5. In general, when the number of INS units increases in the simulation process, the solution pH at which the 26 complexation can occur shifts toward acidic conditions. CS’s chain interacts more efficiently, i.e. in a wider pH range, with INS 27 aggregates formed by the highest monomer number. The charge regulation mechanism can be considered as a previous phase 28 toward complexation (incipient complexation) caused by weak interactions of a Coulombic nature.
Fil: Prudkin Silva, Cecilia Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Pérez, Carlos E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Martínez, Karina Dafne. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Químicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Químicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
Fil: Barroso da silva, Fernando. Universidade do Sao Paulo. Departamento de Bioquímica; Brasil - Materia
-
Molecular Simulation
Insulin
Chitosan - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/121455
Ver los metadatos del registro completo
| id |
CONICETDig_a7da8fdca5583dbb4109325f7960b88e |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/121455 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic InteractionsPrudkin Silva, Cecilia RaquelPérez, Carlos E.Martínez, Karina DafneBarroso da silva, FernandoMolecular SimulationInsulinChitosanhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Protein−polysaccharide complexes constructed via self-assembly methods are often used to develop novel 17 biomaterials for a wide range of applications in biomedicine, food, and biotechnology. The objective of this work was to 18 investigate theoretically and to demonstrate via constant-pH Monte Carlo simulations that the complexation phenomenon 19 between insulin (INS) and the cationic polyelectrolyte chitosan (CS) is mainly driven by an electrostatic mechanism. 20 Experimental results obtained from FTIR spectra and ζ-potential determinations allowed us to complement the conclusions. 21 The characteristic absorption bands for the complexes could be assigned to a combination of signals from CS amide I and INS 22 amide II. The second peak corresponds to the interaction between the polymer and the protein at the level of amide II. INS− 23 CS complexation processes not expected when INS is in its monomeric form, but for both tetrameric and hexameric forms, 24 incipient complexation due to charge regulation mechanism took place at pH 5. The complexation range was observed to be 5.5 25 < pH < 6.5. In general, when the number of INS units increases in the simulation process, the solution pH at which the 26 complexation can occur shifts toward acidic conditions. CS’s chain interacts more efficiently, i.e. in a wider pH range, with INS 27 aggregates formed by the highest monomer number. The charge regulation mechanism can be considered as a previous phase 28 toward complexation (incipient complexation) caused by weak interactions of a Coulombic nature.Fil: Prudkin Silva, Cecilia Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Pérez, Carlos E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Martínez, Karina Dafne. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Químicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Químicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; ArgentinaFil: Barroso da silva, Fernando. Universidade do Sao Paulo. Departamento de Bioquímica; BrasilAmerican Chemical Society2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/121455Prudkin Silva, Cecilia Raquel; Pérez, Carlos E.; Martínez, Karina Dafne; Barroso da silva, Fernando; Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions; American Chemical Society; Journal of Chemical Information and Modeling; 60; 2; 12-2019; 854-8651549-95961520-5142CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b00814info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jcim.9b00814info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:19:20Zoai:ri.conicet.gov.ar:11336/121455instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:19:20.405CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions |
| title |
Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions |
| spellingShingle |
Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions Prudkin Silva, Cecilia Raquel Molecular Simulation Insulin Chitosan |
| title_short |
Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions |
| title_full |
Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions |
| title_fullStr |
Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions |
| title_full_unstemmed |
Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions |
| title_sort |
Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions |
| dc.creator.none.fl_str_mv |
Prudkin Silva, Cecilia Raquel Pérez, Carlos E. Martínez, Karina Dafne Barroso da silva, Fernando |
| author |
Prudkin Silva, Cecilia Raquel |
| author_facet |
Prudkin Silva, Cecilia Raquel Pérez, Carlos E. Martínez, Karina Dafne Barroso da silva, Fernando |
| author_role |
author |
| author2 |
Pérez, Carlos E. Martínez, Karina Dafne Barroso da silva, Fernando |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Molecular Simulation Insulin Chitosan |
| topic |
Molecular Simulation Insulin Chitosan |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Protein−polysaccharide complexes constructed via self-assembly methods are often used to develop novel 17 biomaterials for a wide range of applications in biomedicine, food, and biotechnology. The objective of this work was to 18 investigate theoretically and to demonstrate via constant-pH Monte Carlo simulations that the complexation phenomenon 19 between insulin (INS) and the cationic polyelectrolyte chitosan (CS) is mainly driven by an electrostatic mechanism. 20 Experimental results obtained from FTIR spectra and ζ-potential determinations allowed us to complement the conclusions. 21 The characteristic absorption bands for the complexes could be assigned to a combination of signals from CS amide I and INS 22 amide II. The second peak corresponds to the interaction between the polymer and the protein at the level of amide II. INS− 23 CS complexation processes not expected when INS is in its monomeric form, but for both tetrameric and hexameric forms, 24 incipient complexation due to charge regulation mechanism took place at pH 5. The complexation range was observed to be 5.5 25 < pH < 6.5. In general, when the number of INS units increases in the simulation process, the solution pH at which the 26 complexation can occur shifts toward acidic conditions. CS’s chain interacts more efficiently, i.e. in a wider pH range, with INS 27 aggregates formed by the highest monomer number. The charge regulation mechanism can be considered as a previous phase 28 toward complexation (incipient complexation) caused by weak interactions of a Coulombic nature. Fil: Prudkin Silva, Cecilia Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina Fil: Pérez, Carlos E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina Fil: Martínez, Karina Dafne. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Químicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Químicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina Fil: Barroso da silva, Fernando. Universidade do Sao Paulo. Departamento de Bioquímica; Brasil |
| description |
Protein−polysaccharide complexes constructed via self-assembly methods are often used to develop novel 17 biomaterials for a wide range of applications in biomedicine, food, and biotechnology. The objective of this work was to 18 investigate theoretically and to demonstrate via constant-pH Monte Carlo simulations that the complexation phenomenon 19 between insulin (INS) and the cationic polyelectrolyte chitosan (CS) is mainly driven by an electrostatic mechanism. 20 Experimental results obtained from FTIR spectra and ζ-potential determinations allowed us to complement the conclusions. 21 The characteristic absorption bands for the complexes could be assigned to a combination of signals from CS amide I and INS 22 amide II. The second peak corresponds to the interaction between the polymer and the protein at the level of amide II. INS− 23 CS complexation processes not expected when INS is in its monomeric form, but for both tetrameric and hexameric forms, 24 incipient complexation due to charge regulation mechanism took place at pH 5. The complexation range was observed to be 5.5 25 < pH < 6.5. In general, when the number of INS units increases in the simulation process, the solution pH at which the 26 complexation can occur shifts toward acidic conditions. CS’s chain interacts more efficiently, i.e. in a wider pH range, with INS 27 aggregates formed by the highest monomer number. The charge regulation mechanism can be considered as a previous phase 28 toward complexation (incipient complexation) caused by weak interactions of a Coulombic nature. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/121455 Prudkin Silva, Cecilia Raquel; Pérez, Carlos E.; Martínez, Karina Dafne; Barroso da silva, Fernando; Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions; American Chemical Society; Journal of Chemical Information and Modeling; 60; 2; 12-2019; 854-865 1549-9596 1520-5142 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/121455 |
| identifier_str_mv |
Prudkin Silva, Cecilia Raquel; Pérez, Carlos E.; Martínez, Karina Dafne; Barroso da silva, Fernando; Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions; American Chemical Society; Journal of Chemical Information and Modeling; 60; 2; 12-2019; 854-865 1549-9596 1520-5142 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b00814 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jcim.9b00814 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Chemical Society |
| publisher.none.fl_str_mv |
American Chemical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782630530383872 |
| score |
12.982451 |