Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions

Autores
Prudkin Silva, Cecilia Raquel; Pérez, Carlos E.; Martínez, Karina Dafne; Barroso da silva, Fernando
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Protein−polysaccharide complexes constructed via self-assembly methods are often used to develop novel 17 biomaterials for a wide range of applications in biomedicine, food, and biotechnology. The objective of this work was to 18 investigate theoretically and to demonstrate via constant-pH Monte Carlo simulations that the complexation phenomenon 19 between insulin (INS) and the cationic polyelectrolyte chitosan (CS) is mainly driven by an electrostatic mechanism. 20 Experimental results obtained from FTIR spectra and ζ-potential determinations allowed us to complement the conclusions. 21 The characteristic absorption bands for the complexes could be assigned to a combination of signals from CS amide I and INS 22 amide II. The second peak corresponds to the interaction between the polymer and the protein at the level of amide II. INS− 23 CS complexation processes not expected when INS is in its monomeric form, but for both tetrameric and hexameric forms, 24 incipient complexation due to charge regulation mechanism took place at pH 5. The complexation range was observed to be 5.5 25 < pH < 6.5. In general, when the number of INS units increases in the simulation process, the solution pH at which the 26 complexation can occur shifts toward acidic conditions. CS’s chain interacts more efficiently, i.e. in a wider pH range, with INS 27 aggregates formed by the highest monomer number. The charge regulation mechanism can be considered as a previous phase 28 toward complexation (incipient complexation) caused by weak interactions of a Coulombic nature.
Fil: Prudkin Silva, Cecilia Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Pérez, Carlos E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Martínez, Karina Dafne. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Químicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Químicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
Fil: Barroso da silva, Fernando. Universidade do Sao Paulo. Departamento de Bioquímica; Brasil
Materia
Molecular Simulation
Insulin
Chitosan
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/121455

id CONICETDig_a7da8fdca5583dbb4109325f7960b88e
oai_identifier_str oai:ri.conicet.gov.ar:11336/121455
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic InteractionsPrudkin Silva, Cecilia RaquelPérez, Carlos E.Martínez, Karina DafneBarroso da silva, FernandoMolecular SimulationInsulinChitosanhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Protein−polysaccharide complexes constructed via self-assembly methods are often used to develop novel 17 biomaterials for a wide range of applications in biomedicine, food, and biotechnology. The objective of this work was to 18 investigate theoretically and to demonstrate via constant-pH Monte Carlo simulations that the complexation phenomenon 19 between insulin (INS) and the cationic polyelectrolyte chitosan (CS) is mainly driven by an electrostatic mechanism. 20 Experimental results obtained from FTIR spectra and ζ-potential determinations allowed us to complement the conclusions. 21 The characteristic absorption bands for the complexes could be assigned to a combination of signals from CS amide I and INS 22 amide II. The second peak corresponds to the interaction between the polymer and the protein at the level of amide II. INS− 23 CS complexation processes not expected when INS is in its monomeric form, but for both tetrameric and hexameric forms, 24 incipient complexation due to charge regulation mechanism took place at pH 5. The complexation range was observed to be 5.5 25 < pH < 6.5. In general, when the number of INS units increases in the simulation process, the solution pH at which the 26 complexation can occur shifts toward acidic conditions. CS’s chain interacts more efficiently, i.e. in a wider pH range, with INS 27 aggregates formed by the highest monomer number. The charge regulation mechanism can be considered as a previous phase 28 toward complexation (incipient complexation) caused by weak interactions of a Coulombic nature.Fil: Prudkin Silva, Cecilia Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Pérez, Carlos E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Martínez, Karina Dafne. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Químicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Químicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; ArgentinaFil: Barroso da silva, Fernando. Universidade do Sao Paulo. Departamento de Bioquímica; BrasilAmerican Chemical Society2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/121455Prudkin Silva, Cecilia Raquel; Pérez, Carlos E.; Martínez, Karina Dafne; Barroso da silva, Fernando; Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions; American Chemical Society; Journal of Chemical Information and Modeling; 60; 2; 12-2019; 854-8651549-95961520-5142CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b00814info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jcim.9b00814info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:19:20Zoai:ri.conicet.gov.ar:11336/121455instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:19:20.405CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions
title Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions
spellingShingle Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions
Prudkin Silva, Cecilia Raquel
Molecular Simulation
Insulin
Chitosan
title_short Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions
title_full Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions
title_fullStr Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions
title_full_unstemmed Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions
title_sort Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions
dc.creator.none.fl_str_mv Prudkin Silva, Cecilia Raquel
Pérez, Carlos E.
Martínez, Karina Dafne
Barroso da silva, Fernando
author Prudkin Silva, Cecilia Raquel
author_facet Prudkin Silva, Cecilia Raquel
Pérez, Carlos E.
Martínez, Karina Dafne
Barroso da silva, Fernando
author_role author
author2 Pérez, Carlos E.
Martínez, Karina Dafne
Barroso da silva, Fernando
author2_role author
author
author
dc.subject.none.fl_str_mv Molecular Simulation
Insulin
Chitosan
topic Molecular Simulation
Insulin
Chitosan
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Protein−polysaccharide complexes constructed via self-assembly methods are often used to develop novel 17 biomaterials for a wide range of applications in biomedicine, food, and biotechnology. The objective of this work was to 18 investigate theoretically and to demonstrate via constant-pH Monte Carlo simulations that the complexation phenomenon 19 between insulin (INS) and the cationic polyelectrolyte chitosan (CS) is mainly driven by an electrostatic mechanism. 20 Experimental results obtained from FTIR spectra and ζ-potential determinations allowed us to complement the conclusions. 21 The characteristic absorption bands for the complexes could be assigned to a combination of signals from CS amide I and INS 22 amide II. The second peak corresponds to the interaction between the polymer and the protein at the level of amide II. INS− 23 CS complexation processes not expected when INS is in its monomeric form, but for both tetrameric and hexameric forms, 24 incipient complexation due to charge regulation mechanism took place at pH 5. The complexation range was observed to be 5.5 25 < pH < 6.5. In general, when the number of INS units increases in the simulation process, the solution pH at which the 26 complexation can occur shifts toward acidic conditions. CS’s chain interacts more efficiently, i.e. in a wider pH range, with INS 27 aggregates formed by the highest monomer number. The charge regulation mechanism can be considered as a previous phase 28 toward complexation (incipient complexation) caused by weak interactions of a Coulombic nature.
Fil: Prudkin Silva, Cecilia Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Pérez, Carlos E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Martínez, Karina Dafne. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Químicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Químicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina
Fil: Barroso da silva, Fernando. Universidade do Sao Paulo. Departamento de Bioquímica; Brasil
description Protein−polysaccharide complexes constructed via self-assembly methods are often used to develop novel 17 biomaterials for a wide range of applications in biomedicine, food, and biotechnology. The objective of this work was to 18 investigate theoretically and to demonstrate via constant-pH Monte Carlo simulations that the complexation phenomenon 19 between insulin (INS) and the cationic polyelectrolyte chitosan (CS) is mainly driven by an electrostatic mechanism. 20 Experimental results obtained from FTIR spectra and ζ-potential determinations allowed us to complement the conclusions. 21 The characteristic absorption bands for the complexes could be assigned to a combination of signals from CS amide I and INS 22 amide II. The second peak corresponds to the interaction between the polymer and the protein at the level of amide II. INS− 23 CS complexation processes not expected when INS is in its monomeric form, but for both tetrameric and hexameric forms, 24 incipient complexation due to charge regulation mechanism took place at pH 5. The complexation range was observed to be 5.5 25 < pH < 6.5. In general, when the number of INS units increases in the simulation process, the solution pH at which the 26 complexation can occur shifts toward acidic conditions. CS’s chain interacts more efficiently, i.e. in a wider pH range, with INS 27 aggregates formed by the highest monomer number. The charge regulation mechanism can be considered as a previous phase 28 toward complexation (incipient complexation) caused by weak interactions of a Coulombic nature.
publishDate 2019
dc.date.none.fl_str_mv 2019-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/121455
Prudkin Silva, Cecilia Raquel; Pérez, Carlos E.; Martínez, Karina Dafne; Barroso da silva, Fernando; Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions; American Chemical Society; Journal of Chemical Information and Modeling; 60; 2; 12-2019; 854-865
1549-9596
1520-5142
CONICET Digital
CONICET
url http://hdl.handle.net/11336/121455
identifier_str_mv Prudkin Silva, Cecilia Raquel; Pérez, Carlos E.; Martínez, Karina Dafne; Barroso da silva, Fernando; Combined Experimental and Molecular Simulation Study of Insulin-Chitosan Complexation Driven by Electrostatic Interactions; American Chemical Society; Journal of Chemical Information and Modeling; 60; 2; 12-2019; 854-865
1549-9596
1520-5142
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b00814
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jcim.9b00814
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782630530383872
score 12.982451