Spectra of lens spaces from 1-norm spectra of congruence lattices
- Autores
- Lauret, Emilio Agustin; Miatello, Roberto Jorge; Rossetti, Juan Pablo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- To every n-dimensional lens space L, we associate a congruence lattice L in ℤm, with n=2m - 1 and we prove a formula relating the multiplicities of Hodge-Laplace eigenvalues on L with the number of lattice elements of a given ||·||1-length in l. As a consequence, we show that two lens spaces are isospectral on functions (respectively, isospectral on p-forms for every p) if and only if the associated congruence lattices are ||·||1-isospectral (respectively, ||·||1-isospectral plus a geometric condition). Using this fact, we give, for every dimension n≥ 5, infinitely many examples of Riemannian manifolds that are isospectral on every level p and are not strongly isospectral.
Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Miatello, Roberto Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Rossetti, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Spectrum
Lattice
Lens Space
Norm One - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60238
Ver los metadatos del registro completo
id |
CONICETDig_a7c6c421598ec56585840d3e17201371 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60238 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Spectra of lens spaces from 1-norm spectra of congruence latticesLauret, Emilio AgustinMiatello, Roberto JorgeRossetti, Juan PabloSpectrumLatticeLens SpaceNorm Onehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1To every n-dimensional lens space L, we associate a congruence lattice L in ℤm, with n=2m - 1 and we prove a formula relating the multiplicities of Hodge-Laplace eigenvalues on L with the number of lattice elements of a given ||·||1-length in l. As a consequence, we show that two lens spaces are isospectral on functions (respectively, isospectral on p-forms for every p) if and only if the associated congruence lattices are ||·||1-isospectral (respectively, ||·||1-isospectral plus a geometric condition). Using this fact, we give, for every dimension n≥ 5, infinitely many examples of Riemannian manifolds that are isospectral on every level p and are not strongly isospectral.Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Miatello, Roberto Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Rossetti, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaOxford University Press2016-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60238Lauret, Emilio Agustin; Miatello, Roberto Jorge; Rossetti, Juan Pablo; Spectra of lens spaces from 1-norm spectra of congruence lattices; Oxford University Press; International Mathematics Research Notices; 2016; 4; 1-1-2016; 1054-10891073-7928CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2016/4/1054/2450863info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnv159info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.7167info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:24Zoai:ri.conicet.gov.ar:11336/60238instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:24.284CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Spectra of lens spaces from 1-norm spectra of congruence lattices |
title |
Spectra of lens spaces from 1-norm spectra of congruence lattices |
spellingShingle |
Spectra of lens spaces from 1-norm spectra of congruence lattices Lauret, Emilio Agustin Spectrum Lattice Lens Space Norm One |
title_short |
Spectra of lens spaces from 1-norm spectra of congruence lattices |
title_full |
Spectra of lens spaces from 1-norm spectra of congruence lattices |
title_fullStr |
Spectra of lens spaces from 1-norm spectra of congruence lattices |
title_full_unstemmed |
Spectra of lens spaces from 1-norm spectra of congruence lattices |
title_sort |
Spectra of lens spaces from 1-norm spectra of congruence lattices |
dc.creator.none.fl_str_mv |
Lauret, Emilio Agustin Miatello, Roberto Jorge Rossetti, Juan Pablo |
author |
Lauret, Emilio Agustin |
author_facet |
Lauret, Emilio Agustin Miatello, Roberto Jorge Rossetti, Juan Pablo |
author_role |
author |
author2 |
Miatello, Roberto Jorge Rossetti, Juan Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Spectrum Lattice Lens Space Norm One |
topic |
Spectrum Lattice Lens Space Norm One |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
To every n-dimensional lens space L, we associate a congruence lattice L in ℤm, with n=2m - 1 and we prove a formula relating the multiplicities of Hodge-Laplace eigenvalues on L with the number of lattice elements of a given ||·||1-length in l. As a consequence, we show that two lens spaces are isospectral on functions (respectively, isospectral on p-forms for every p) if and only if the associated congruence lattices are ||·||1-isospectral (respectively, ||·||1-isospectral plus a geometric condition). Using this fact, we give, for every dimension n≥ 5, infinitely many examples of Riemannian manifolds that are isospectral on every level p and are not strongly isospectral. Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Miatello, Roberto Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Rossetti, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
To every n-dimensional lens space L, we associate a congruence lattice L in ℤm, with n=2m - 1 and we prove a formula relating the multiplicities of Hodge-Laplace eigenvalues on L with the number of lattice elements of a given ||·||1-length in l. As a consequence, we show that two lens spaces are isospectral on functions (respectively, isospectral on p-forms for every p) if and only if the associated congruence lattices are ||·||1-isospectral (respectively, ||·||1-isospectral plus a geometric condition). Using this fact, we give, for every dimension n≥ 5, infinitely many examples of Riemannian manifolds that are isospectral on every level p and are not strongly isospectral. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60238 Lauret, Emilio Agustin; Miatello, Roberto Jorge; Rossetti, Juan Pablo; Spectra of lens spaces from 1-norm spectra of congruence lattices; Oxford University Press; International Mathematics Research Notices; 2016; 4; 1-1-2016; 1054-1089 1073-7928 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60238 |
identifier_str_mv |
Lauret, Emilio Agustin; Miatello, Roberto Jorge; Rossetti, Juan Pablo; Spectra of lens spaces from 1-norm spectra of congruence lattices; Oxford University Press; International Mathematics Research Notices; 2016; 4; 1-1-2016; 1054-1089 1073-7928 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2016/4/1054/2450863 info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnv159 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.7167 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613025965801472 |
score |
13.070432 |