Accurate calculation of the solutions to the Thomas-Fermi equations
- Autores
- Amore, Paulo; Boyd, John P.; Fernández, Francisco Marcelo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We obtain highly accurate solutions to the Thomas-Fermi equations for atoms and atoms in very strong magnetic fields. We apply the Padé-Hankel method, numerical integration, power series with Padé and Hermite-Padé approximants and Chebyshev polynomials. Both the slope at origin and the location of the right boundary in the magnetic-field case are given with unprecedented accuracy.
Fil: Amore, Paulo. Universidad de Colima; México
Fil: Boyd, John P. . University Of Michigan; Estados Unidos
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
Atoms
Atoms in magnetic fields
Thomas-Fermi theory
Accurate solutions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/5169
Ver los metadatos del registro completo
| id |
CONICETDig_a62935c6982003c1a26fd04921eee6df |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/5169 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Accurate calculation of the solutions to the Thomas-Fermi equationsAmore, PauloBoyd, John P. Fernández, Francisco MarceloAtomsAtoms in magnetic fieldsThomas-Fermi theoryAccurate solutionshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We obtain highly accurate solutions to the Thomas-Fermi equations for atoms and atoms in very strong magnetic fields. We apply the Padé-Hankel method, numerical integration, power series with Padé and Hermite-Padé approximants and Chebyshev polynomials. Both the slope at origin and the location of the right boundary in the magnetic-field case are given with unprecedented accuracy.Fil: Amore, Paulo. Universidad de Colima; MéxicoFil: Boyd, John P. . University Of Michigan; Estados UnidosFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaElsevier2014-02-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5169Amore, Paulo; Boyd, John P. ; Fernández, Francisco Marcelo; Accurate calculation of the solutions to the Thomas-Fermi equations; Elsevier; Applied Mathematics and Computation; 232; 24-2-2014; 929-9430096-3003enginfo:eu-repo/semantics/altIdentifier/arxiv/1205.1704v2info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0096300314001829info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1205.1704info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2014.01.137info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:18:22Zoai:ri.conicet.gov.ar:11336/5169instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:18:22.573CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Accurate calculation of the solutions to the Thomas-Fermi equations |
| title |
Accurate calculation of the solutions to the Thomas-Fermi equations |
| spellingShingle |
Accurate calculation of the solutions to the Thomas-Fermi equations Amore, Paulo Atoms Atoms in magnetic fields Thomas-Fermi theory Accurate solutions |
| title_short |
Accurate calculation of the solutions to the Thomas-Fermi equations |
| title_full |
Accurate calculation of the solutions to the Thomas-Fermi equations |
| title_fullStr |
Accurate calculation of the solutions to the Thomas-Fermi equations |
| title_full_unstemmed |
Accurate calculation of the solutions to the Thomas-Fermi equations |
| title_sort |
Accurate calculation of the solutions to the Thomas-Fermi equations |
| dc.creator.none.fl_str_mv |
Amore, Paulo Boyd, John P. Fernández, Francisco Marcelo |
| author |
Amore, Paulo |
| author_facet |
Amore, Paulo Boyd, John P. Fernández, Francisco Marcelo |
| author_role |
author |
| author2 |
Boyd, John P. Fernández, Francisco Marcelo |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Atoms Atoms in magnetic fields Thomas-Fermi theory Accurate solutions |
| topic |
Atoms Atoms in magnetic fields Thomas-Fermi theory Accurate solutions |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We obtain highly accurate solutions to the Thomas-Fermi equations for atoms and atoms in very strong magnetic fields. We apply the Padé-Hankel method, numerical integration, power series with Padé and Hermite-Padé approximants and Chebyshev polynomials. Both the slope at origin and the location of the right boundary in the magnetic-field case are given with unprecedented accuracy. Fil: Amore, Paulo. Universidad de Colima; México Fil: Boyd, John P. . University Of Michigan; Estados Unidos Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina |
| description |
We obtain highly accurate solutions to the Thomas-Fermi equations for atoms and atoms in very strong magnetic fields. We apply the Padé-Hankel method, numerical integration, power series with Padé and Hermite-Padé approximants and Chebyshev polynomials. Both the slope at origin and the location of the right boundary in the magnetic-field case are given with unprecedented accuracy. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-02-24 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/5169 Amore, Paulo; Boyd, John P. ; Fernández, Francisco Marcelo; Accurate calculation of the solutions to the Thomas-Fermi equations; Elsevier; Applied Mathematics and Computation; 232; 24-2-2014; 929-943 0096-3003 |
| url |
http://hdl.handle.net/11336/5169 |
| identifier_str_mv |
Amore, Paulo; Boyd, John P. ; Fernández, Francisco Marcelo; Accurate calculation of the solutions to the Thomas-Fermi equations; Elsevier; Applied Mathematics and Computation; 232; 24-2-2014; 929-943 0096-3003 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/1205.1704v2 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0096300314001829 info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1205.1704 info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2014.01.137 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782613935620096 |
| score |
12.982451 |