Accurate calculation of the solutions to the Thomas-Fermi equations

Autores
Amore, Paulo; Boyd, John P.; Fernández, Francisco Marcelo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We obtain highly accurate solutions to the Thomas-Fermi equations for atoms and atoms in very strong magnetic fields. We apply the Padé-Hankel method, numerical integration, power series with Padé and Hermite-Padé approximants and Chebyshev polynomials. Both the slope at origin and the location of the right boundary in the magnetic-field case are given with unprecedented accuracy.
Fil: Amore, Paulo. Universidad de Colima; México
Fil: Boyd, John P. . University Of Michigan; Estados Unidos
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
Materia
Atoms
Atoms in magnetic fields
Thomas-Fermi theory
Accurate solutions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5169

id CONICETDig_a62935c6982003c1a26fd04921eee6df
oai_identifier_str oai:ri.conicet.gov.ar:11336/5169
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Accurate calculation of the solutions to the Thomas-Fermi equationsAmore, PauloBoyd, John P. Fernández, Francisco MarceloAtomsAtoms in magnetic fieldsThomas-Fermi theoryAccurate solutionshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We obtain highly accurate solutions to the Thomas-Fermi equations for atoms and atoms in very strong magnetic fields. We apply the Padé-Hankel method, numerical integration, power series with Padé and Hermite-Padé approximants and Chebyshev polynomials. Both the slope at origin and the location of the right boundary in the magnetic-field case are given with unprecedented accuracy.Fil: Amore, Paulo. Universidad de Colima; MéxicoFil: Boyd, John P. . University Of Michigan; Estados UnidosFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaElsevier2014-02-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5169Amore, Paulo; Boyd, John P. ; Fernández, Francisco Marcelo; Accurate calculation of the solutions to the Thomas-Fermi equations; Elsevier; Applied Mathematics and Computation; 232; 24-2-2014; 929-9430096-3003enginfo:eu-repo/semantics/altIdentifier/arxiv/1205.1704v2info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0096300314001829info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1205.1704info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2014.01.137info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:56:33Zoai:ri.conicet.gov.ar:11336/5169instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:56:33.645CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Accurate calculation of the solutions to the Thomas-Fermi equations
title Accurate calculation of the solutions to the Thomas-Fermi equations
spellingShingle Accurate calculation of the solutions to the Thomas-Fermi equations
Amore, Paulo
Atoms
Atoms in magnetic fields
Thomas-Fermi theory
Accurate solutions
title_short Accurate calculation of the solutions to the Thomas-Fermi equations
title_full Accurate calculation of the solutions to the Thomas-Fermi equations
title_fullStr Accurate calculation of the solutions to the Thomas-Fermi equations
title_full_unstemmed Accurate calculation of the solutions to the Thomas-Fermi equations
title_sort Accurate calculation of the solutions to the Thomas-Fermi equations
dc.creator.none.fl_str_mv Amore, Paulo
Boyd, John P.
Fernández, Francisco Marcelo
author Amore, Paulo
author_facet Amore, Paulo
Boyd, John P.
Fernández, Francisco Marcelo
author_role author
author2 Boyd, John P.
Fernández, Francisco Marcelo
author2_role author
author
dc.subject.none.fl_str_mv Atoms
Atoms in magnetic fields
Thomas-Fermi theory
Accurate solutions
topic Atoms
Atoms in magnetic fields
Thomas-Fermi theory
Accurate solutions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We obtain highly accurate solutions to the Thomas-Fermi equations for atoms and atoms in very strong magnetic fields. We apply the Padé-Hankel method, numerical integration, power series with Padé and Hermite-Padé approximants and Chebyshev polynomials. Both the slope at origin and the location of the right boundary in the magnetic-field case are given with unprecedented accuracy.
Fil: Amore, Paulo. Universidad de Colima; México
Fil: Boyd, John P. . University Of Michigan; Estados Unidos
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
description We obtain highly accurate solutions to the Thomas-Fermi equations for atoms and atoms in very strong magnetic fields. We apply the Padé-Hankel method, numerical integration, power series with Padé and Hermite-Padé approximants and Chebyshev polynomials. Both the slope at origin and the location of the right boundary in the magnetic-field case are given with unprecedented accuracy.
publishDate 2014
dc.date.none.fl_str_mv 2014-02-24
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5169
Amore, Paulo; Boyd, John P. ; Fernández, Francisco Marcelo; Accurate calculation of the solutions to the Thomas-Fermi equations; Elsevier; Applied Mathematics and Computation; 232; 24-2-2014; 929-943
0096-3003
url http://hdl.handle.net/11336/5169
identifier_str_mv Amore, Paulo; Boyd, John P. ; Fernández, Francisco Marcelo; Accurate calculation of the solutions to the Thomas-Fermi equations; Elsevier; Applied Mathematics and Computation; 232; 24-2-2014; 929-943
0096-3003
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/arxiv/1205.1704v2
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0096300314001829
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1205.1704
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2014.01.137
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606908368322560
score 13.001348