Accurate calculation of the solutions to the Thomas-Fermi equations
- Autores
- Amore, Paulo; Boyd, John P.; Fernández, Francisco Marcelo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We obtain highly accurate solutions to the Thomas-Fermi equations for atoms and atoms in very strong magnetic fields. We apply the Padé-Hankel method, numerical integration, power series with Padé and Hermite-Padé approximants and Chebyshev polynomials. Both the slope at origin and the location of the right boundary in the magnetic-field case are given with unprecedented accuracy.
Fil: Amore, Paulo. Universidad de Colima; México
Fil: Boyd, John P. . University Of Michigan; Estados Unidos
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
Atoms
Atoms in magnetic fields
Thomas-Fermi theory
Accurate solutions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/5169
Ver los metadatos del registro completo
id |
CONICETDig_a62935c6982003c1a26fd04921eee6df |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/5169 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Accurate calculation of the solutions to the Thomas-Fermi equationsAmore, PauloBoyd, John P. Fernández, Francisco MarceloAtomsAtoms in magnetic fieldsThomas-Fermi theoryAccurate solutionshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We obtain highly accurate solutions to the Thomas-Fermi equations for atoms and atoms in very strong magnetic fields. We apply the Padé-Hankel method, numerical integration, power series with Padé and Hermite-Padé approximants and Chebyshev polynomials. Both the slope at origin and the location of the right boundary in the magnetic-field case are given with unprecedented accuracy.Fil: Amore, Paulo. Universidad de Colima; MéxicoFil: Boyd, John P. . University Of Michigan; Estados UnidosFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaElsevier2014-02-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5169Amore, Paulo; Boyd, John P. ; Fernández, Francisco Marcelo; Accurate calculation of the solutions to the Thomas-Fermi equations; Elsevier; Applied Mathematics and Computation; 232; 24-2-2014; 929-9430096-3003enginfo:eu-repo/semantics/altIdentifier/arxiv/1205.1704v2info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0096300314001829info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1205.1704info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2014.01.137info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:56:33Zoai:ri.conicet.gov.ar:11336/5169instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:56:33.645CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Accurate calculation of the solutions to the Thomas-Fermi equations |
title |
Accurate calculation of the solutions to the Thomas-Fermi equations |
spellingShingle |
Accurate calculation of the solutions to the Thomas-Fermi equations Amore, Paulo Atoms Atoms in magnetic fields Thomas-Fermi theory Accurate solutions |
title_short |
Accurate calculation of the solutions to the Thomas-Fermi equations |
title_full |
Accurate calculation of the solutions to the Thomas-Fermi equations |
title_fullStr |
Accurate calculation of the solutions to the Thomas-Fermi equations |
title_full_unstemmed |
Accurate calculation of the solutions to the Thomas-Fermi equations |
title_sort |
Accurate calculation of the solutions to the Thomas-Fermi equations |
dc.creator.none.fl_str_mv |
Amore, Paulo Boyd, John P. Fernández, Francisco Marcelo |
author |
Amore, Paulo |
author_facet |
Amore, Paulo Boyd, John P. Fernández, Francisco Marcelo |
author_role |
author |
author2 |
Boyd, John P. Fernández, Francisco Marcelo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Atoms Atoms in magnetic fields Thomas-Fermi theory Accurate solutions |
topic |
Atoms Atoms in magnetic fields Thomas-Fermi theory Accurate solutions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We obtain highly accurate solutions to the Thomas-Fermi equations for atoms and atoms in very strong magnetic fields. We apply the Padé-Hankel method, numerical integration, power series with Padé and Hermite-Padé approximants and Chebyshev polynomials. Both the slope at origin and the location of the right boundary in the magnetic-field case are given with unprecedented accuracy. Fil: Amore, Paulo. Universidad de Colima; México Fil: Boyd, John P. . University Of Michigan; Estados Unidos Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina |
description |
We obtain highly accurate solutions to the Thomas-Fermi equations for atoms and atoms in very strong magnetic fields. We apply the Padé-Hankel method, numerical integration, power series with Padé and Hermite-Padé approximants and Chebyshev polynomials. Both the slope at origin and the location of the right boundary in the magnetic-field case are given with unprecedented accuracy. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-02-24 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/5169 Amore, Paulo; Boyd, John P. ; Fernández, Francisco Marcelo; Accurate calculation of the solutions to the Thomas-Fermi equations; Elsevier; Applied Mathematics and Computation; 232; 24-2-2014; 929-943 0096-3003 |
url |
http://hdl.handle.net/11336/5169 |
identifier_str_mv |
Amore, Paulo; Boyd, John P. ; Fernández, Francisco Marcelo; Accurate calculation of the solutions to the Thomas-Fermi equations; Elsevier; Applied Mathematics and Computation; 232; 24-2-2014; 929-943 0096-3003 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/1205.1704v2 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0096300314001829 info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1205.1704 info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2014.01.137 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606908368322560 |
score |
13.001348 |