Superfluid Thomas - Fermi approximation for trapped fermi gases
- Autores
- Hernndez, S.; Capuzzi, P.; Szybisz, L.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We present a generalization of fermionic fluiddynamics to the case of two trapped fermion species with a contact interaction. Within a mean field approximation, we derive coupled equations of motion for the particle densities, particle currents, and anomalous pair density. For an inhomogeneous system, the equilibrium situation with vanishing currents is described by a generalized Thomas-Fermi relation that includes the superfluid gap, together with a new nonlocal gap equation that replaces the usual BCS one. These equations are numericaly solved resorting to a local density approximation (LDA). Density and gap profiles are analyzed in terms of the scattering length, revealing that the current frame can exhibit microscopic details of quantum origin that are frequently absent in more macroscopic scenarios. © 2009 IOP Publishing Ltd.
Fil:Capuzzi, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Szybisz, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Phys. Conf. Ser. 2009;150(3)
- Materia
-
Electron gas
Equations of motion
Fermions
Contact interaction
Inhomogeneous system
Mean field approximation
Particle currents
Particle densities
Scattering length
Thomas-Fermi approximation
Trapped fermi gas
Local density approximation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_17426588_v150_n3_p_Hernndez
Ver los metadatos del registro completo
id |
BDUBAFCEN_4c845c6e05b30a7d668b3f64f1da793e |
---|---|
oai_identifier_str |
paperaa:paper_17426588_v150_n3_p_Hernndez |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Superfluid Thomas - Fermi approximation for trapped fermi gasesHernndez, S.Capuzzi, P.Szybisz, L.Electron gasEquations of motionFermionsContact interactionInhomogeneous systemMean field approximationParticle currentsParticle densitiesScattering lengthThomas-Fermi approximationTrapped fermi gasLocal density approximationWe present a generalization of fermionic fluiddynamics to the case of two trapped fermion species with a contact interaction. Within a mean field approximation, we derive coupled equations of motion for the particle densities, particle currents, and anomalous pair density. For an inhomogeneous system, the equilibrium situation with vanishing currents is described by a generalized Thomas-Fermi relation that includes the superfluid gap, together with a new nonlocal gap equation that replaces the usual BCS one. These equations are numericaly solved resorting to a local density approximation (LDA). Density and gap profiles are analyzed in terms of the scattering length, revealing that the current frame can exhibit microscopic details of quantum origin that are frequently absent in more macroscopic scenarios. © 2009 IOP Publishing Ltd.Fil:Capuzzi, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Szybisz, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2009info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_17426588_v150_n3_p_HernndezJ. Phys. Conf. Ser. 2009;150(3)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:52Zpaperaa:paper_17426588_v150_n3_p_HernndezInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:53.333Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Superfluid Thomas - Fermi approximation for trapped fermi gases |
title |
Superfluid Thomas - Fermi approximation for trapped fermi gases |
spellingShingle |
Superfluid Thomas - Fermi approximation for trapped fermi gases Hernndez, S. Electron gas Equations of motion Fermions Contact interaction Inhomogeneous system Mean field approximation Particle currents Particle densities Scattering length Thomas-Fermi approximation Trapped fermi gas Local density approximation |
title_short |
Superfluid Thomas - Fermi approximation for trapped fermi gases |
title_full |
Superfluid Thomas - Fermi approximation for trapped fermi gases |
title_fullStr |
Superfluid Thomas - Fermi approximation for trapped fermi gases |
title_full_unstemmed |
Superfluid Thomas - Fermi approximation for trapped fermi gases |
title_sort |
Superfluid Thomas - Fermi approximation for trapped fermi gases |
dc.creator.none.fl_str_mv |
Hernndez, S. Capuzzi, P. Szybisz, L. |
author |
Hernndez, S. |
author_facet |
Hernndez, S. Capuzzi, P. Szybisz, L. |
author_role |
author |
author2 |
Capuzzi, P. Szybisz, L. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Electron gas Equations of motion Fermions Contact interaction Inhomogeneous system Mean field approximation Particle currents Particle densities Scattering length Thomas-Fermi approximation Trapped fermi gas Local density approximation |
topic |
Electron gas Equations of motion Fermions Contact interaction Inhomogeneous system Mean field approximation Particle currents Particle densities Scattering length Thomas-Fermi approximation Trapped fermi gas Local density approximation |
dc.description.none.fl_txt_mv |
We present a generalization of fermionic fluiddynamics to the case of two trapped fermion species with a contact interaction. Within a mean field approximation, we derive coupled equations of motion for the particle densities, particle currents, and anomalous pair density. For an inhomogeneous system, the equilibrium situation with vanishing currents is described by a generalized Thomas-Fermi relation that includes the superfluid gap, together with a new nonlocal gap equation that replaces the usual BCS one. These equations are numericaly solved resorting to a local density approximation (LDA). Density and gap profiles are analyzed in terms of the scattering length, revealing that the current frame can exhibit microscopic details of quantum origin that are frequently absent in more macroscopic scenarios. © 2009 IOP Publishing Ltd. Fil:Capuzzi, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Szybisz, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We present a generalization of fermionic fluiddynamics to the case of two trapped fermion species with a contact interaction. Within a mean field approximation, we derive coupled equations of motion for the particle densities, particle currents, and anomalous pair density. For an inhomogeneous system, the equilibrium situation with vanishing currents is described by a generalized Thomas-Fermi relation that includes the superfluid gap, together with a new nonlocal gap equation that replaces the usual BCS one. These equations are numericaly solved resorting to a local density approximation (LDA). Density and gap profiles are analyzed in terms of the scattering length, revealing that the current frame can exhibit microscopic details of quantum origin that are frequently absent in more macroscopic scenarios. © 2009 IOP Publishing Ltd. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_17426588_v150_n3_p_Hernndez |
url |
http://hdl.handle.net/20.500.12110/paper_17426588_v150_n3_p_Hernndez |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Phys. Conf. Ser. 2009;150(3) reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618734062272512 |
score |
13.070432 |