Comparison of resampling methods and radiomic machine learning classifiers for predicting bone quality using dual-energy X-ray absorptiometry

Autores
Gonzalez, Mailen; Fuertes García, José Manuel; Zanchetta, María Belén; Abdala, Ruben; Massa, José María
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background/Objectives: This study presents a novel approach, based on a combination of radiomic feature extraction, data resampling techniques, and machine learning algorithms, for the detection of degraded bone structures in Dual X-ray Absorptiometry (DXA) images. This comprehensive approach, which addresses the critical aspects of the problem, distinguishes this work from previous studies, improving the performance achieved by the most similar studies. The primary aim is to provide clinicians with an accessible tool for quality bone assessment, which is currently limited. Methods: A dataset of 1531 spine DXA images was automatically segmented and labelled based on Trabecular Bone Score (TBS) values. Radiomic features were extracted using Pyradiomics, and various resampling techniques were employed to address class imbalance. Three machine learning classifiers (Logistic Regression, Support Vector Machine (SVM), and XGBoost) were trained and evaluated using standard performance metrics. Results: The SVM classifier outperformed the other classifiers. The highest F-score of 97.5% was achieved using the Grey Level Dependence Matrix and Grey Level Run Length Matrix feature combination with SMOTEENN resampling, which proved to be the most effective resampling technique, while the undersampling method yielded the lowest performance. Conclusions: This research demonstrates the potential of radiomic texture features, resampling techniques, and machine learning methods for classifying DXA images into healthy or degraded bone structures, which potentially leads to improved clinical diagnosis and treatment.
Fil: Gonzalez, Mailen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; Argentina
Fil: Fuertes García, José Manuel. Universidad de Jaén; España
Fil: Zanchetta, María Belén. Instituto de Diagnostico E Investigaciones Metabolicas (idim);
Fil: Abdala, Ruben. Instituto de Diagnostico E Investigaciones Metabolicas (idim);
Fil: Massa, José María. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; Argentina
Materia
DATA RESAMPLING
DUAL ENERGY X-RAY ABSORPTIOMETRY
MACHINE LEARNING
RADIOMICS
TRABECULAR BONE SCORE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/269416

id CONICETDig_a54c0dc0374f513336599129aae460d3
oai_identifier_str oai:ri.conicet.gov.ar:11336/269416
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Comparison of resampling methods and radiomic machine learning classifiers for predicting bone quality using dual-energy X-ray absorptiometryGonzalez, MailenFuertes García, José ManuelZanchetta, María BelénAbdala, RubenMassa, José MaríaDATA RESAMPLINGDUAL ENERGY X-RAY ABSORPTIOMETRYMACHINE LEARNINGRADIOMICSTRABECULAR BONE SCOREhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Background/Objectives: This study presents a novel approach, based on a combination of radiomic feature extraction, data resampling techniques, and machine learning algorithms, for the detection of degraded bone structures in Dual X-ray Absorptiometry (DXA) images. This comprehensive approach, which addresses the critical aspects of the problem, distinguishes this work from previous studies, improving the performance achieved by the most similar studies. The primary aim is to provide clinicians with an accessible tool for quality bone assessment, which is currently limited. Methods: A dataset of 1531 spine DXA images was automatically segmented and labelled based on Trabecular Bone Score (TBS) values. Radiomic features were extracted using Pyradiomics, and various resampling techniques were employed to address class imbalance. Three machine learning classifiers (Logistic Regression, Support Vector Machine (SVM), and XGBoost) were trained and evaluated using standard performance metrics. Results: The SVM classifier outperformed the other classifiers. The highest F-score of 97.5% was achieved using the Grey Level Dependence Matrix and Grey Level Run Length Matrix feature combination with SMOTEENN resampling, which proved to be the most effective resampling technique, while the undersampling method yielded the lowest performance. Conclusions: This research demonstrates the potential of radiomic texture features, resampling techniques, and machine learning methods for classifying DXA images into healthy or degraded bone structures, which potentially leads to improved clinical diagnosis and treatment.Fil: Gonzalez, Mailen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; ArgentinaFil: Fuertes García, José Manuel. Universidad de Jaén; EspañaFil: Zanchetta, María Belén. Instituto de Diagnostico E Investigaciones Metabolicas (idim);Fil: Abdala, Ruben. Instituto de Diagnostico E Investigaciones Metabolicas (idim);Fil: Massa, José María. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; ArgentinaMultidisciplinary Digital Publishing Institute2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/269416Gonzalez, Mailen; Fuertes García, José Manuel; Zanchetta, María Belén; Abdala, Ruben; Massa, José María; Comparison of resampling methods and radiomic machine learning classifiers for predicting bone quality using dual-energy X-ray absorptiometry; Multidisciplinary Digital Publishing Institute; Diagnostics; 15; 2; 1-2025; 1-162075-4418CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-4418/15/2/175info:eu-repo/semantics/altIdentifier/doi/10.3390/diagnostics15020175info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:59Zoai:ri.conicet.gov.ar:11336/269416instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:59.988CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Comparison of resampling methods and radiomic machine learning classifiers for predicting bone quality using dual-energy X-ray absorptiometry
title Comparison of resampling methods and radiomic machine learning classifiers for predicting bone quality using dual-energy X-ray absorptiometry
spellingShingle Comparison of resampling methods and radiomic machine learning classifiers for predicting bone quality using dual-energy X-ray absorptiometry
Gonzalez, Mailen
DATA RESAMPLING
DUAL ENERGY X-RAY ABSORPTIOMETRY
MACHINE LEARNING
RADIOMICS
TRABECULAR BONE SCORE
title_short Comparison of resampling methods and radiomic machine learning classifiers for predicting bone quality using dual-energy X-ray absorptiometry
title_full Comparison of resampling methods and radiomic machine learning classifiers for predicting bone quality using dual-energy X-ray absorptiometry
title_fullStr Comparison of resampling methods and radiomic machine learning classifiers for predicting bone quality using dual-energy X-ray absorptiometry
title_full_unstemmed Comparison of resampling methods and radiomic machine learning classifiers for predicting bone quality using dual-energy X-ray absorptiometry
title_sort Comparison of resampling methods and radiomic machine learning classifiers for predicting bone quality using dual-energy X-ray absorptiometry
dc.creator.none.fl_str_mv Gonzalez, Mailen
Fuertes García, José Manuel
Zanchetta, María Belén
Abdala, Ruben
Massa, José María
author Gonzalez, Mailen
author_facet Gonzalez, Mailen
Fuertes García, José Manuel
Zanchetta, María Belén
Abdala, Ruben
Massa, José María
author_role author
author2 Fuertes García, José Manuel
Zanchetta, María Belén
Abdala, Ruben
Massa, José María
author2_role author
author
author
author
dc.subject.none.fl_str_mv DATA RESAMPLING
DUAL ENERGY X-RAY ABSORPTIOMETRY
MACHINE LEARNING
RADIOMICS
TRABECULAR BONE SCORE
topic DATA RESAMPLING
DUAL ENERGY X-RAY ABSORPTIOMETRY
MACHINE LEARNING
RADIOMICS
TRABECULAR BONE SCORE
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Background/Objectives: This study presents a novel approach, based on a combination of radiomic feature extraction, data resampling techniques, and machine learning algorithms, for the detection of degraded bone structures in Dual X-ray Absorptiometry (DXA) images. This comprehensive approach, which addresses the critical aspects of the problem, distinguishes this work from previous studies, improving the performance achieved by the most similar studies. The primary aim is to provide clinicians with an accessible tool for quality bone assessment, which is currently limited. Methods: A dataset of 1531 spine DXA images was automatically segmented and labelled based on Trabecular Bone Score (TBS) values. Radiomic features were extracted using Pyradiomics, and various resampling techniques were employed to address class imbalance. Three machine learning classifiers (Logistic Regression, Support Vector Machine (SVM), and XGBoost) were trained and evaluated using standard performance metrics. Results: The SVM classifier outperformed the other classifiers. The highest F-score of 97.5% was achieved using the Grey Level Dependence Matrix and Grey Level Run Length Matrix feature combination with SMOTEENN resampling, which proved to be the most effective resampling technique, while the undersampling method yielded the lowest performance. Conclusions: This research demonstrates the potential of radiomic texture features, resampling techniques, and machine learning methods for classifying DXA images into healthy or degraded bone structures, which potentially leads to improved clinical diagnosis and treatment.
Fil: Gonzalez, Mailen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; Argentina
Fil: Fuertes García, José Manuel. Universidad de Jaén; España
Fil: Zanchetta, María Belén. Instituto de Diagnostico E Investigaciones Metabolicas (idim);
Fil: Abdala, Ruben. Instituto de Diagnostico E Investigaciones Metabolicas (idim);
Fil: Massa, José María. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; Argentina
description Background/Objectives: This study presents a novel approach, based on a combination of radiomic feature extraction, data resampling techniques, and machine learning algorithms, for the detection of degraded bone structures in Dual X-ray Absorptiometry (DXA) images. This comprehensive approach, which addresses the critical aspects of the problem, distinguishes this work from previous studies, improving the performance achieved by the most similar studies. The primary aim is to provide clinicians with an accessible tool for quality bone assessment, which is currently limited. Methods: A dataset of 1531 spine DXA images was automatically segmented and labelled based on Trabecular Bone Score (TBS) values. Radiomic features were extracted using Pyradiomics, and various resampling techniques were employed to address class imbalance. Three machine learning classifiers (Logistic Regression, Support Vector Machine (SVM), and XGBoost) were trained and evaluated using standard performance metrics. Results: The SVM classifier outperformed the other classifiers. The highest F-score of 97.5% was achieved using the Grey Level Dependence Matrix and Grey Level Run Length Matrix feature combination with SMOTEENN resampling, which proved to be the most effective resampling technique, while the undersampling method yielded the lowest performance. Conclusions: This research demonstrates the potential of radiomic texture features, resampling techniques, and machine learning methods for classifying DXA images into healthy or degraded bone structures, which potentially leads to improved clinical diagnosis and treatment.
publishDate 2025
dc.date.none.fl_str_mv 2025-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/269416
Gonzalez, Mailen; Fuertes García, José Manuel; Zanchetta, María Belén; Abdala, Ruben; Massa, José María; Comparison of resampling methods and radiomic machine learning classifiers for predicting bone quality using dual-energy X-ray absorptiometry; Multidisciplinary Digital Publishing Institute; Diagnostics; 15; 2; 1-2025; 1-16
2075-4418
CONICET Digital
CONICET
url http://hdl.handle.net/11336/269416
identifier_str_mv Gonzalez, Mailen; Fuertes García, José Manuel; Zanchetta, María Belén; Abdala, Ruben; Massa, José María; Comparison of resampling methods and radiomic machine learning classifiers for predicting bone quality using dual-energy X-ray absorptiometry; Multidisciplinary Digital Publishing Institute; Diagnostics; 15; 2; 1-2025; 1-16
2075-4418
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-4418/15/2/175
info:eu-repo/semantics/altIdentifier/doi/10.3390/diagnostics15020175
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269376536903680
score 13.13397