Bone Quality Classification of Dual Energy X-ray Absorptiometry Images Using Convolutional Neural Network Models
- Autores
- Gonzalez, Mailen; Fuertes García, Jose M.; Lucena López, Manuel J.; Abdala, Ruben; Massa, José María
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The assessment of bone trabecular quality degrada-tion is important for the detection of diseases such as osteoporosis. The gold standard for its diagnosis is the Dual Energy X-ray Absorptiometry (DXA) image modality. The analysis of these images is a topic of growing interest, especially with artificial intelligence techniques. This work proposes the detection of a degraded bone structure from DXA images using some approaches based on the learning of Trabecular Bone Score (TBS) ranges. The proposed models are supported by intelligent systems based on convolutional neural networks using two kinds of approaches: ad hoc architectures and knowledge transfer systems in deep network architectures, such as AlexNet, ResNet, VGG, SqueezeNet, and DenseNet retrained with DXA images. For both approaches, experimental studies were made comparing the proposed models in terms of effectiveness and training time, achieving an F1-Score result of approximately 0.75 to classify the bone structure as degraded or normal according to its TBS range.
Fil: Gonzalez, Mailen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; Argentina
Fil: Fuertes García, Jose M.. Universidad de Jaén; España
Fil: Lucena López, Manuel J.. Universidad de Jaén; España
Fil: Abdala, Ruben. Instituto de Diagnostico E Investigaciones Metabolicas (idim);
Fil: Massa, José María. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; Argentina - Materia
-
OSTEOPOROSIS
DUAL X RAY ABSORPTIOMETRY
TRABECULAR BONE SCORE
CONVOLUTIONAL NEURAL NETWORK - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/244402
Ver los metadatos del registro completo
id |
CONICETDig_8dad9a075519fc5692cf393c2e685011 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/244402 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bone Quality Classification of Dual Energy X-ray Absorptiometry Images Using Convolutional Neural Network ModelsGonzalez, MailenFuertes García, Jose M.Lucena López, Manuel J.Abdala, RubenMassa, José MaríaOSTEOPOROSISDUAL X RAY ABSORPTIOMETRYTRABECULAR BONE SCORECONVOLUTIONAL NEURAL NETWORKhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The assessment of bone trabecular quality degrada-tion is important for the detection of diseases such as osteoporosis. The gold standard for its diagnosis is the Dual Energy X-ray Absorptiometry (DXA) image modality. The analysis of these images is a topic of growing interest, especially with artificial intelligence techniques. This work proposes the detection of a degraded bone structure from DXA images using some approaches based on the learning of Trabecular Bone Score (TBS) ranges. The proposed models are supported by intelligent systems based on convolutional neural networks using two kinds of approaches: ad hoc architectures and knowledge transfer systems in deep network architectures, such as AlexNet, ResNet, VGG, SqueezeNet, and DenseNet retrained with DXA images. For both approaches, experimental studies were made comparing the proposed models in terms of effectiveness and training time, achieving an F1-Score result of approximately 0.75 to classify the bone structure as degraded or normal according to its TBS range.Fil: Gonzalez, Mailen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; ArgentinaFil: Fuertes García, Jose M.. Universidad de Jaén; EspañaFil: Lucena López, Manuel J.. Universidad de Jaén; EspañaFil: Abdala, Ruben. Instituto de Diagnostico E Investigaciones Metabolicas (idim);Fil: Massa, José María. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; ArgentinaThe Science and Information Organization2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/244402Gonzalez, Mailen; Fuertes García, Jose M.; Lucena López, Manuel J.; Abdala, Ruben; Massa, José María; Bone Quality Classification of Dual Energy X-ray Absorptiometry Images Using Convolutional Neural Network Models; The Science and Information Organization; International Journal of Advanced Computer Science and Applications; 15; 6; 6-2024; 554-15602158-107X2156-5570CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://thesai.org/Publications/ViewPaper?Volume=15&Issue=6&Code=ijacsa&SerialNo=154info:eu-repo/semantics/altIdentifier/doi/10.14569/IJACSA.2024.01506154info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:48Zoai:ri.conicet.gov.ar:11336/244402instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:48.548CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bone Quality Classification of Dual Energy X-ray Absorptiometry Images Using Convolutional Neural Network Models |
title |
Bone Quality Classification of Dual Energy X-ray Absorptiometry Images Using Convolutional Neural Network Models |
spellingShingle |
Bone Quality Classification of Dual Energy X-ray Absorptiometry Images Using Convolutional Neural Network Models Gonzalez, Mailen OSTEOPOROSIS DUAL X RAY ABSORPTIOMETRY TRABECULAR BONE SCORE CONVOLUTIONAL NEURAL NETWORK |
title_short |
Bone Quality Classification of Dual Energy X-ray Absorptiometry Images Using Convolutional Neural Network Models |
title_full |
Bone Quality Classification of Dual Energy X-ray Absorptiometry Images Using Convolutional Neural Network Models |
title_fullStr |
Bone Quality Classification of Dual Energy X-ray Absorptiometry Images Using Convolutional Neural Network Models |
title_full_unstemmed |
Bone Quality Classification of Dual Energy X-ray Absorptiometry Images Using Convolutional Neural Network Models |
title_sort |
Bone Quality Classification of Dual Energy X-ray Absorptiometry Images Using Convolutional Neural Network Models |
dc.creator.none.fl_str_mv |
Gonzalez, Mailen Fuertes García, Jose M. Lucena López, Manuel J. Abdala, Ruben Massa, José María |
author |
Gonzalez, Mailen |
author_facet |
Gonzalez, Mailen Fuertes García, Jose M. Lucena López, Manuel J. Abdala, Ruben Massa, José María |
author_role |
author |
author2 |
Fuertes García, Jose M. Lucena López, Manuel J. Abdala, Ruben Massa, José María |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
OSTEOPOROSIS DUAL X RAY ABSORPTIOMETRY TRABECULAR BONE SCORE CONVOLUTIONAL NEURAL NETWORK |
topic |
OSTEOPOROSIS DUAL X RAY ABSORPTIOMETRY TRABECULAR BONE SCORE CONVOLUTIONAL NEURAL NETWORK |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The assessment of bone trabecular quality degrada-tion is important for the detection of diseases such as osteoporosis. The gold standard for its diagnosis is the Dual Energy X-ray Absorptiometry (DXA) image modality. The analysis of these images is a topic of growing interest, especially with artificial intelligence techniques. This work proposes the detection of a degraded bone structure from DXA images using some approaches based on the learning of Trabecular Bone Score (TBS) ranges. The proposed models are supported by intelligent systems based on convolutional neural networks using two kinds of approaches: ad hoc architectures and knowledge transfer systems in deep network architectures, such as AlexNet, ResNet, VGG, SqueezeNet, and DenseNet retrained with DXA images. For both approaches, experimental studies were made comparing the proposed models in terms of effectiveness and training time, achieving an F1-Score result of approximately 0.75 to classify the bone structure as degraded or normal according to its TBS range. Fil: Gonzalez, Mailen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; Argentina Fil: Fuertes García, Jose M.. Universidad de Jaén; España Fil: Lucena López, Manuel J.. Universidad de Jaén; España Fil: Abdala, Ruben. Instituto de Diagnostico E Investigaciones Metabolicas (idim); Fil: Massa, José María. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; Argentina |
description |
The assessment of bone trabecular quality degrada-tion is important for the detection of diseases such as osteoporosis. The gold standard for its diagnosis is the Dual Energy X-ray Absorptiometry (DXA) image modality. The analysis of these images is a topic of growing interest, especially with artificial intelligence techniques. This work proposes the detection of a degraded bone structure from DXA images using some approaches based on the learning of Trabecular Bone Score (TBS) ranges. The proposed models are supported by intelligent systems based on convolutional neural networks using two kinds of approaches: ad hoc architectures and knowledge transfer systems in deep network architectures, such as AlexNet, ResNet, VGG, SqueezeNet, and DenseNet retrained with DXA images. For both approaches, experimental studies were made comparing the proposed models in terms of effectiveness and training time, achieving an F1-Score result of approximately 0.75 to classify the bone structure as degraded or normal according to its TBS range. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/244402 Gonzalez, Mailen; Fuertes García, Jose M.; Lucena López, Manuel J.; Abdala, Ruben; Massa, José María; Bone Quality Classification of Dual Energy X-ray Absorptiometry Images Using Convolutional Neural Network Models; The Science and Information Organization; International Journal of Advanced Computer Science and Applications; 15; 6; 6-2024; 554-1560 2158-107X 2156-5570 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/244402 |
identifier_str_mv |
Gonzalez, Mailen; Fuertes García, Jose M.; Lucena López, Manuel J.; Abdala, Ruben; Massa, José María; Bone Quality Classification of Dual Energy X-ray Absorptiometry Images Using Convolutional Neural Network Models; The Science and Information Organization; International Journal of Advanced Computer Science and Applications; 15; 6; 6-2024; 554-1560 2158-107X 2156-5570 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://thesai.org/Publications/ViewPaper?Volume=15&Issue=6&Code=ijacsa&SerialNo=154 info:eu-repo/semantics/altIdentifier/doi/10.14569/IJACSA.2024.01506154 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
The Science and Information Organization |
publisher.none.fl_str_mv |
The Science and Information Organization |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269183615696896 |
score |
13.13397 |