Neogene Mafic Magmatism in the Northern Puna Plateau, Argentina: Generation and Evolution of a Back-arc Volcanic Suite

Autores
Maro, Guadalupe; Caffe, Pablo Jorge; Romer, Rolf L; Trumbull, Robert B
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Neogene back-arc mafic volcanism in the northern Puna Plateau produced a suite of mainly high-Mg, calc-alkaline, basaltic andesites to andesites that form small scoria cones and lava fields. We present the first comprehensive geochemical study of the mafic suite in the northern Puna that complements work on similar rocks from the southern Puna Plateau. The emphasis is on magma genesis and evolution in both areas, and on a combined interpretation of the two regional datasets in the geodynamic context of back-arc magmatism in the central Andes. The results from the northern Puna suite (bulk-rock and mineral compositions, thermobarometry and radiogenic isotope ratios) are consistent with a predominantly asthenospheric source for the mafic magmas, with variable but locally significant contamination by crustal material. Quantifying the crustal and mantle input fails in most cases because the data display contradictory features, such as high compatible element contents (Mg, Ni, Cr) paired with moderate contents of silica and incompatible lithophile elements that defy classical models of magma mixing, fractionation and assimilation. We suggest that magma evolution involved selective assimilation during turbulent flow, probably at more than one level in the crust. Comparison with the southern Puna mafic suite reveals many features in common (high magma temperatures, textural evidence of rapid magma ascent and cooling, assimilation of crust at different depths). However, the volume of erupted magma is greater in the south than in the north and the volcanism in the south is slightly younger. There is much compositional overlap between the two regions, but the southern Puna suite extends to more primitive compositions. These differences suggest a stronger crustal influence in the northern Puna andesites, which we suggest is due to the presence of an extended upper-crustal melt zone associated with the Altiplano?Puna ignimbrite province. Radiogenic Sr and Nd isotope data from both suites define two diverging trends of variation with MgO that can be explained with a crustal component common to both trends, similar to the silicic ignimbrites, and two contrasting mantle components. The more common and regionally more widespread of the two mantle components (also seen in the frontal arc magmas) has 87Sr/86Sr and 143Nd/144Nd values of 0·705 and 0·5126, respectively, which we attribute to an asthenospheric source enriched by subduction erosion. The less common of the two has Sr and Nd initial ratios (0·708 and 0·51235) that we attribute to melting or assimilation of enriched lithosphere. This component has been found only in the northern Puna and it may have an origin in delaminated lithosphere.
Fil: Maro, Guadalupe. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; Argentina
Fil: Caffe, Pablo Jorge. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; Argentina
Fil: Romer, Rolf L. German Research Centre for Geosciences; Alemania
Fil: Trumbull, Robert B. German Research Centre for Geosciences; Alemania
Materia
High-Mg Andesite
Puna Plateau
Central Andes
Monogenetic Volcanism
Mafic Volcanism
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/46929

id CONICETDig_a52fad78d6179fad467edb62058ca7ca
oai_identifier_str oai:ri.conicet.gov.ar:11336/46929
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Neogene Mafic Magmatism in the Northern Puna Plateau, Argentina: Generation and Evolution of a Back-arc Volcanic SuiteMaro, GuadalupeCaffe, Pablo JorgeRomer, Rolf LTrumbull, Robert BHigh-Mg AndesitePuna PlateauCentral AndesMonogenetic VolcanismMafic Volcanismhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Neogene back-arc mafic volcanism in the northern Puna Plateau produced a suite of mainly high-Mg, calc-alkaline, basaltic andesites to andesites that form small scoria cones and lava fields. We present the first comprehensive geochemical study of the mafic suite in the northern Puna that complements work on similar rocks from the southern Puna Plateau. The emphasis is on magma genesis and evolution in both areas, and on a combined interpretation of the two regional datasets in the geodynamic context of back-arc magmatism in the central Andes. The results from the northern Puna suite (bulk-rock and mineral compositions, thermobarometry and radiogenic isotope ratios) are consistent with a predominantly asthenospheric source for the mafic magmas, with variable but locally significant contamination by crustal material. Quantifying the crustal and mantle input fails in most cases because the data display contradictory features, such as high compatible element contents (Mg, Ni, Cr) paired with moderate contents of silica and incompatible lithophile elements that defy classical models of magma mixing, fractionation and assimilation. We suggest that magma evolution involved selective assimilation during turbulent flow, probably at more than one level in the crust. Comparison with the southern Puna mafic suite reveals many features in common (high magma temperatures, textural evidence of rapid magma ascent and cooling, assimilation of crust at different depths). However, the volume of erupted magma is greater in the south than in the north and the volcanism in the south is slightly younger. There is much compositional overlap between the two regions, but the southern Puna suite extends to more primitive compositions. These differences suggest a stronger crustal influence in the northern Puna andesites, which we suggest is due to the presence of an extended upper-crustal melt zone associated with the Altiplano?Puna ignimbrite province. Radiogenic Sr and Nd isotope data from both suites define two diverging trends of variation with MgO that can be explained with a crustal component common to both trends, similar to the silicic ignimbrites, and two contrasting mantle components. The more common and regionally more widespread of the two mantle components (also seen in the frontal arc magmas) has <sup>87</sup>Sr/<sup>86</sup>Sr and <sup>143</sup>Nd/<sup>144</sup>Nd values of 0·705 and 0·5126, respectively, which we attribute to an asthenospheric source enriched by subduction erosion. The less common of the two has Sr and Nd initial ratios (0·708 and 0·51235) that we attribute to melting or assimilation of enriched lithosphere. This component has been found only in the northern Puna and it may have an origin in delaminated lithosphere.Fil: Maro, Guadalupe. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; ArgentinaFil: Caffe, Pablo Jorge. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; ArgentinaFil: Romer, Rolf L. German Research Centre for Geosciences; AlemaniaFil: Trumbull, Robert B. German Research Centre for Geosciences; AlemaniaOxford University Press2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46929Maro, Guadalupe; Caffe, Pablo Jorge; Romer, Rolf L; Trumbull, Robert B; Neogene Mafic Magmatism in the Northern Puna Plateau, Argentina: Generation and Evolution of a Back-arc Volcanic Suite; Oxford University Press; Journal Of Petrology; 58; 8; 8-2017; 1591-16170022-3530CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://academic.oup.com/petrology/article/58/8/1591/4460104info:eu-repo/semantics/altIdentifier/doi/10.1093/petrology/egx066info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:04Zoai:ri.conicet.gov.ar:11336/46929instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:04.316CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Neogene Mafic Magmatism in the Northern Puna Plateau, Argentina: Generation and Evolution of a Back-arc Volcanic Suite
title Neogene Mafic Magmatism in the Northern Puna Plateau, Argentina: Generation and Evolution of a Back-arc Volcanic Suite
spellingShingle Neogene Mafic Magmatism in the Northern Puna Plateau, Argentina: Generation and Evolution of a Back-arc Volcanic Suite
Maro, Guadalupe
High-Mg Andesite
Puna Plateau
Central Andes
Monogenetic Volcanism
Mafic Volcanism
title_short Neogene Mafic Magmatism in the Northern Puna Plateau, Argentina: Generation and Evolution of a Back-arc Volcanic Suite
title_full Neogene Mafic Magmatism in the Northern Puna Plateau, Argentina: Generation and Evolution of a Back-arc Volcanic Suite
title_fullStr Neogene Mafic Magmatism in the Northern Puna Plateau, Argentina: Generation and Evolution of a Back-arc Volcanic Suite
title_full_unstemmed Neogene Mafic Magmatism in the Northern Puna Plateau, Argentina: Generation and Evolution of a Back-arc Volcanic Suite
title_sort Neogene Mafic Magmatism in the Northern Puna Plateau, Argentina: Generation and Evolution of a Back-arc Volcanic Suite
dc.creator.none.fl_str_mv Maro, Guadalupe
Caffe, Pablo Jorge
Romer, Rolf L
Trumbull, Robert B
author Maro, Guadalupe
author_facet Maro, Guadalupe
Caffe, Pablo Jorge
Romer, Rolf L
Trumbull, Robert B
author_role author
author2 Caffe, Pablo Jorge
Romer, Rolf L
Trumbull, Robert B
author2_role author
author
author
dc.subject.none.fl_str_mv High-Mg Andesite
Puna Plateau
Central Andes
Monogenetic Volcanism
Mafic Volcanism
topic High-Mg Andesite
Puna Plateau
Central Andes
Monogenetic Volcanism
Mafic Volcanism
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Neogene back-arc mafic volcanism in the northern Puna Plateau produced a suite of mainly high-Mg, calc-alkaline, basaltic andesites to andesites that form small scoria cones and lava fields. We present the first comprehensive geochemical study of the mafic suite in the northern Puna that complements work on similar rocks from the southern Puna Plateau. The emphasis is on magma genesis and evolution in both areas, and on a combined interpretation of the two regional datasets in the geodynamic context of back-arc magmatism in the central Andes. The results from the northern Puna suite (bulk-rock and mineral compositions, thermobarometry and radiogenic isotope ratios) are consistent with a predominantly asthenospheric source for the mafic magmas, with variable but locally significant contamination by crustal material. Quantifying the crustal and mantle input fails in most cases because the data display contradictory features, such as high compatible element contents (Mg, Ni, Cr) paired with moderate contents of silica and incompatible lithophile elements that defy classical models of magma mixing, fractionation and assimilation. We suggest that magma evolution involved selective assimilation during turbulent flow, probably at more than one level in the crust. Comparison with the southern Puna mafic suite reveals many features in common (high magma temperatures, textural evidence of rapid magma ascent and cooling, assimilation of crust at different depths). However, the volume of erupted magma is greater in the south than in the north and the volcanism in the south is slightly younger. There is much compositional overlap between the two regions, but the southern Puna suite extends to more primitive compositions. These differences suggest a stronger crustal influence in the northern Puna andesites, which we suggest is due to the presence of an extended upper-crustal melt zone associated with the Altiplano?Puna ignimbrite province. Radiogenic Sr and Nd isotope data from both suites define two diverging trends of variation with MgO that can be explained with a crustal component common to both trends, similar to the silicic ignimbrites, and two contrasting mantle components. The more common and regionally more widespread of the two mantle components (also seen in the frontal arc magmas) has <sup>87</sup>Sr/<sup>86</sup>Sr and <sup>143</sup>Nd/<sup>144</sup>Nd values of 0·705 and 0·5126, respectively, which we attribute to an asthenospheric source enriched by subduction erosion. The less common of the two has Sr and Nd initial ratios (0·708 and 0·51235) that we attribute to melting or assimilation of enriched lithosphere. This component has been found only in the northern Puna and it may have an origin in delaminated lithosphere.
Fil: Maro, Guadalupe. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; Argentina
Fil: Caffe, Pablo Jorge. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; Argentina
Fil: Romer, Rolf L. German Research Centre for Geosciences; Alemania
Fil: Trumbull, Robert B. German Research Centre for Geosciences; Alemania
description Neogene back-arc mafic volcanism in the northern Puna Plateau produced a suite of mainly high-Mg, calc-alkaline, basaltic andesites to andesites that form small scoria cones and lava fields. We present the first comprehensive geochemical study of the mafic suite in the northern Puna that complements work on similar rocks from the southern Puna Plateau. The emphasis is on magma genesis and evolution in both areas, and on a combined interpretation of the two regional datasets in the geodynamic context of back-arc magmatism in the central Andes. The results from the northern Puna suite (bulk-rock and mineral compositions, thermobarometry and radiogenic isotope ratios) are consistent with a predominantly asthenospheric source for the mafic magmas, with variable but locally significant contamination by crustal material. Quantifying the crustal and mantle input fails in most cases because the data display contradictory features, such as high compatible element contents (Mg, Ni, Cr) paired with moderate contents of silica and incompatible lithophile elements that defy classical models of magma mixing, fractionation and assimilation. We suggest that magma evolution involved selective assimilation during turbulent flow, probably at more than one level in the crust. Comparison with the southern Puna mafic suite reveals many features in common (high magma temperatures, textural evidence of rapid magma ascent and cooling, assimilation of crust at different depths). However, the volume of erupted magma is greater in the south than in the north and the volcanism in the south is slightly younger. There is much compositional overlap between the two regions, but the southern Puna suite extends to more primitive compositions. These differences suggest a stronger crustal influence in the northern Puna andesites, which we suggest is due to the presence of an extended upper-crustal melt zone associated with the Altiplano?Puna ignimbrite province. Radiogenic Sr and Nd isotope data from both suites define two diverging trends of variation with MgO that can be explained with a crustal component common to both trends, similar to the silicic ignimbrites, and two contrasting mantle components. The more common and regionally more widespread of the two mantle components (also seen in the frontal arc magmas) has <sup>87</sup>Sr/<sup>86</sup>Sr and <sup>143</sup>Nd/<sup>144</sup>Nd values of 0·705 and 0·5126, respectively, which we attribute to an asthenospheric source enriched by subduction erosion. The less common of the two has Sr and Nd initial ratios (0·708 and 0·51235) that we attribute to melting or assimilation of enriched lithosphere. This component has been found only in the northern Puna and it may have an origin in delaminated lithosphere.
publishDate 2017
dc.date.none.fl_str_mv 2017-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/46929
Maro, Guadalupe; Caffe, Pablo Jorge; Romer, Rolf L; Trumbull, Robert B; Neogene Mafic Magmatism in the Northern Puna Plateau, Argentina: Generation and Evolution of a Back-arc Volcanic Suite; Oxford University Press; Journal Of Petrology; 58; 8; 8-2017; 1591-1617
0022-3530
CONICET Digital
CONICET
url http://hdl.handle.net/11336/46929
identifier_str_mv Maro, Guadalupe; Caffe, Pablo Jorge; Romer, Rolf L; Trumbull, Robert B; Neogene Mafic Magmatism in the Northern Puna Plateau, Argentina: Generation and Evolution of a Back-arc Volcanic Suite; Oxford University Press; Journal Of Petrology; 58; 8; 8-2017; 1591-1617
0022-3530
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://academic.oup.com/petrology/article/58/8/1591/4460104
info:eu-repo/semantics/altIdentifier/doi/10.1093/petrology/egx066
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613298535792640
score 13.069144