Correlation functions in the non-commutative Wess-Zumino-Witten model

Autores
Lugo, Adrián René
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We develop a systematic perturbative expansion and compute the one-loop two-points, three-points and four-points correlation functions in a non-commutative version of the U (N) Wess-Zumino-Witten model in different regimes of the θ-parameter showing in the first case a kind of phase transition around the value θc = √p2 + 4m2/(λ2p), where λ is a ultraviolet cut-off in a Schwinger regularization scheme. As a by-product we obtain the functions of the renormalization group, showing they are essentially the same as in the commutative case but applied to the whole U (N) fields; in particular there exists a critical point where they are null, in agreement with a recent background field computation of the beta-function, and the anomalous dimension of the Lie algebra-valued field operator agrees with the current algebra prediction. The non-renormalization of the level k is explicitly verified from the four-points correlator, where a left-right non-invariant counter-term is needed to render finite the theory, that it is however null on-shell. These results give support to the equivalence of this model with the commutative one. © 2001 Elsevier Science B.V.
Fil: Lugo, Adrián René. Facultad de Ciencias Exactas, Universidad Nacional de la Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
Quantum field theories
Chern-Simons theories
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/98632

id CONICETDig_a477673b389fb92bc97a5219e8438c78
oai_identifier_str oai:ri.conicet.gov.ar:11336/98632
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Correlation functions in the non-commutative Wess-Zumino-Witten modelLugo, Adrián RenéQuantum field theoriesChern-Simons theorieshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We develop a systematic perturbative expansion and compute the one-loop two-points, three-points and four-points correlation functions in a non-commutative version of the U (N) Wess-Zumino-Witten model in different regimes of the θ-parameter showing in the first case a kind of phase transition around the value θc = √p2 + 4m2/(λ2p), where λ is a ultraviolet cut-off in a Schwinger regularization scheme. As a by-product we obtain the functions of the renormalization group, showing they are essentially the same as in the commutative case but applied to the whole U (N) fields; in particular there exists a critical point where they are null, in agreement with a recent background field computation of the beta-function, and the anomalous dimension of the Lie algebra-valued field operator agrees with the current algebra prediction. The non-renormalization of the level k is explicitly verified from the four-points correlator, where a left-right non-invariant counter-term is needed to render finite the theory, that it is however null on-shell. These results give support to the equivalence of this model with the commutative one. © 2001 Elsevier Science B.V.Fil: Lugo, Adrián René. Facultad de Ciencias Exactas, Universidad Nacional de la Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaElsevier Science2001-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98632Lugo, Adrián René; Correlation functions in the non-commutative Wess-Zumino-Witten model; Elsevier Science; Physics Letters B; 511; 1; 6-2001; 101-1110370-2693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/S0370-2693(01)00627-Xinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S037026930100627X?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:22:24Zoai:ri.conicet.gov.ar:11336/98632instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:22:24.625CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Correlation functions in the non-commutative Wess-Zumino-Witten model
title Correlation functions in the non-commutative Wess-Zumino-Witten model
spellingShingle Correlation functions in the non-commutative Wess-Zumino-Witten model
Lugo, Adrián René
Quantum field theories
Chern-Simons theories
title_short Correlation functions in the non-commutative Wess-Zumino-Witten model
title_full Correlation functions in the non-commutative Wess-Zumino-Witten model
title_fullStr Correlation functions in the non-commutative Wess-Zumino-Witten model
title_full_unstemmed Correlation functions in the non-commutative Wess-Zumino-Witten model
title_sort Correlation functions in the non-commutative Wess-Zumino-Witten model
dc.creator.none.fl_str_mv Lugo, Adrián René
author Lugo, Adrián René
author_facet Lugo, Adrián René
author_role author
dc.subject.none.fl_str_mv Quantum field theories
Chern-Simons theories
topic Quantum field theories
Chern-Simons theories
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We develop a systematic perturbative expansion and compute the one-loop two-points, three-points and four-points correlation functions in a non-commutative version of the U (N) Wess-Zumino-Witten model in different regimes of the θ-parameter showing in the first case a kind of phase transition around the value θc = √p2 + 4m2/(λ2p), where λ is a ultraviolet cut-off in a Schwinger regularization scheme. As a by-product we obtain the functions of the renormalization group, showing they are essentially the same as in the commutative case but applied to the whole U (N) fields; in particular there exists a critical point where they are null, in agreement with a recent background field computation of the beta-function, and the anomalous dimension of the Lie algebra-valued field operator agrees with the current algebra prediction. The non-renormalization of the level k is explicitly verified from the four-points correlator, where a left-right non-invariant counter-term is needed to render finite the theory, that it is however null on-shell. These results give support to the equivalence of this model with the commutative one. © 2001 Elsevier Science B.V.
Fil: Lugo, Adrián René. Facultad de Ciencias Exactas, Universidad Nacional de la Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description We develop a systematic perturbative expansion and compute the one-loop two-points, three-points and four-points correlation functions in a non-commutative version of the U (N) Wess-Zumino-Witten model in different regimes of the θ-parameter showing in the first case a kind of phase transition around the value θc = √p2 + 4m2/(λ2p), where λ is a ultraviolet cut-off in a Schwinger regularization scheme. As a by-product we obtain the functions of the renormalization group, showing they are essentially the same as in the commutative case but applied to the whole U (N) fields; in particular there exists a critical point where they are null, in agreement with a recent background field computation of the beta-function, and the anomalous dimension of the Lie algebra-valued field operator agrees with the current algebra prediction. The non-renormalization of the level k is explicitly verified from the four-points correlator, where a left-right non-invariant counter-term is needed to render finite the theory, that it is however null on-shell. These results give support to the equivalence of this model with the commutative one. © 2001 Elsevier Science B.V.
publishDate 2001
dc.date.none.fl_str_mv 2001-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/98632
Lugo, Adrián René; Correlation functions in the non-commutative Wess-Zumino-Witten model; Elsevier Science; Physics Letters B; 511; 1; 6-2001; 101-111
0370-2693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/98632
identifier_str_mv Lugo, Adrián René; Correlation functions in the non-commutative Wess-Zumino-Witten model; Elsevier Science; Physics Letters B; 511; 1; 6-2001; 101-111
0370-2693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/S0370-2693(01)00627-X
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S037026930100627X?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083371205132288
score 13.22299