A note on noncommutative Chern–Simons model on manifolds with boundary

Autores
Lugo, Adrián René
Año de publicación
2002
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study field theories defined in regions of the spatial noncommutative (NC) plane with a boundary present delimiting them, concentrating in particular on the U(1) NC Chern-Simons theory on the upper half-plane. We find that classical consistency and gauge invariance lead necessary to the introduction of K0-space of square integrable functions null together with all their derivatives at the origin. Furthermore the requirement of closure of K0 under the *-product leads to the introduction of a novel notion of the *-product itself in regions where a boundary is present, that in turn yields the complexification of the gauge group and to consider chiral waves in one sense or other. The canonical quantization of the theory is sketched identifying the physical states and the physical operators. These last ones include ordinary NC Wilson lines starting and ending on the boundary that yield correlation functions depending on points on the one-dimensional boundary. We finally extend the definition of the *-product to a strip and comment on possible relevance of these results to finite quantum Hall systems.
Fil: Lugo, Adrián René. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
Chern-Simons theories
Non-commutative theories
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/99141

id CONICETDig_905fddd02d20179ca04df7df25adc064
oai_identifier_str oai:ri.conicet.gov.ar:11336/99141
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A note on noncommutative Chern–Simons model on manifolds with boundaryLugo, Adrián RenéChern-Simons theoriesNon-commutative theorieshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study field theories defined in regions of the spatial noncommutative (NC) plane with a boundary present delimiting them, concentrating in particular on the U(1) NC Chern-Simons theory on the upper half-plane. We find that classical consistency and gauge invariance lead necessary to the introduction of K0-space of square integrable functions null together with all their derivatives at the origin. Furthermore the requirement of closure of K0 under the *-product leads to the introduction of a novel notion of the *-product itself in regions where a boundary is present, that in turn yields the complexification of the gauge group and to consider chiral waves in one sense or other. The canonical quantization of the theory is sketched identifying the physical states and the physical operators. These last ones include ordinary NC Wilson lines starting and ending on the boundary that yield correlation functions depending on points on the one-dimensional boundary. We finally extend the definition of the *-product to a strip and comment on possible relevance of these results to finite quantum Hall systems.Fil: Lugo, Adrián René. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaWorld Scientific2002-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99141Lugo, Adrián René; A note on noncommutative Chern–Simons model on manifolds with boundary; World Scientific; Modern Physics Letters A: Particles and Fields; Gravitation; Cosmology and Nuclear Physics; 17; 3; 1-2002; 141-1550217-7323CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0217732302006047info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0217732302006047info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:37Zoai:ri.conicet.gov.ar:11336/99141instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:37.718CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A note on noncommutative Chern–Simons model on manifolds with boundary
title A note on noncommutative Chern–Simons model on manifolds with boundary
spellingShingle A note on noncommutative Chern–Simons model on manifolds with boundary
Lugo, Adrián René
Chern-Simons theories
Non-commutative theories
title_short A note on noncommutative Chern–Simons model on manifolds with boundary
title_full A note on noncommutative Chern–Simons model on manifolds with boundary
title_fullStr A note on noncommutative Chern–Simons model on manifolds with boundary
title_full_unstemmed A note on noncommutative Chern–Simons model on manifolds with boundary
title_sort A note on noncommutative Chern–Simons model on manifolds with boundary
dc.creator.none.fl_str_mv Lugo, Adrián René
author Lugo, Adrián René
author_facet Lugo, Adrián René
author_role author
dc.subject.none.fl_str_mv Chern-Simons theories
Non-commutative theories
topic Chern-Simons theories
Non-commutative theories
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study field theories defined in regions of the spatial noncommutative (NC) plane with a boundary present delimiting them, concentrating in particular on the U(1) NC Chern-Simons theory on the upper half-plane. We find that classical consistency and gauge invariance lead necessary to the introduction of K0-space of square integrable functions null together with all their derivatives at the origin. Furthermore the requirement of closure of K0 under the *-product leads to the introduction of a novel notion of the *-product itself in regions where a boundary is present, that in turn yields the complexification of the gauge group and to consider chiral waves in one sense or other. The canonical quantization of the theory is sketched identifying the physical states and the physical operators. These last ones include ordinary NC Wilson lines starting and ending on the boundary that yield correlation functions depending on points on the one-dimensional boundary. We finally extend the definition of the *-product to a strip and comment on possible relevance of these results to finite quantum Hall systems.
Fil: Lugo, Adrián René. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description We study field theories defined in regions of the spatial noncommutative (NC) plane with a boundary present delimiting them, concentrating in particular on the U(1) NC Chern-Simons theory on the upper half-plane. We find that classical consistency and gauge invariance lead necessary to the introduction of K0-space of square integrable functions null together with all their derivatives at the origin. Furthermore the requirement of closure of K0 under the *-product leads to the introduction of a novel notion of the *-product itself in regions where a boundary is present, that in turn yields the complexification of the gauge group and to consider chiral waves in one sense or other. The canonical quantization of the theory is sketched identifying the physical states and the physical operators. These last ones include ordinary NC Wilson lines starting and ending on the boundary that yield correlation functions depending on points on the one-dimensional boundary. We finally extend the definition of the *-product to a strip and comment on possible relevance of these results to finite quantum Hall systems.
publishDate 2002
dc.date.none.fl_str_mv 2002-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/99141
Lugo, Adrián René; A note on noncommutative Chern–Simons model on manifolds with boundary; World Scientific; Modern Physics Letters A: Particles and Fields; Gravitation; Cosmology and Nuclear Physics; 17; 3; 1-2002; 141-155
0217-7323
CONICET Digital
CONICET
url http://hdl.handle.net/11336/99141
identifier_str_mv Lugo, Adrián René; A note on noncommutative Chern–Simons model on manifolds with boundary; World Scientific; Modern Physics Letters A: Particles and Fields; Gravitation; Cosmology and Nuclear Physics; 17; 3; 1-2002; 141-155
0217-7323
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S0217732302006047
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0217732302006047
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270088634302464
score 13.13397