Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities

Autores
Ahmed, Aqeel; Banjac, Karla; Verlekar, Sachin S.; Cometto, Fernando Pablo; Lingenfelder, Magalí Alejandra; Galland, Christophe
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Immense field enhancement and nanoscale confinement of light are possible within nanoparticle-on-mirror (NPoM) plasmonic resonators, which enable novel optically activated physical and chemical phenomena and render these nanocavities greatly sensitive to minute structural changes, down to the atomic scale. Although a few of these structural parameters, primarily linked to the nanoparticle and the mirror morphology, have been identified, the impact of molecular assembly and organization of the spacer layer between them has often been left uncharacterized. Here, we experimentally investigate how the complex and reconfigurable nature of a thiol-based self-Assembled monolayer (SAM) adsorbed on the mirror surface impacts the optical properties of the NPoMs. We fabricate NPoMs with distinct molecular organizations by controlling the incubation time of the mirror in the thiol solution. Afterward, we investigate the structural changes that occur under laser irradiation by tracking the bonding dipole plasmon mode, while also monitoring Stokes and anti-Stokes Raman scattering from the molecules as a probe of their integrity. First, we find an effective decrease in the SAM height as the laser power increases, compatible with an irreversible change of molecule orientation caused by heating. Second, we observe that the nanocavities prepared with a densely packed and more ordered monolayer of molecules are more prone to changes in their resonance compared to samples with sparser and more disordered SAMs. Our measurements indicate that molecular orientation and packing on the mirror surface play a key role in determining the stability of NPoM structures and hence highlight the under-recognized significance of SAM characterization in the development of NPoM-based applications.
Fil: Ahmed, Aqeel. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Banjac, Karla. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Verlekar, Sachin S.. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Cometto, Fernando Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. École Polytechnique Fédérale de Lausanne; Suiza. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica; Argentina
Fil: Lingenfelder, Magalí Alejandra. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Galland, Christophe. École Polytechnique Fédérale de Lausanne; Suiza
Materia
DARK FIELD (DF) SCATTERING
NANOPARTICLE ON MIRROR (NPOM)
PLASMONIC NANOCAVITIES
SCANNING TUNNELING MICROSCOPY (STM)
SELF-ASSEMBLED MONOLAYER (SAM)
SURFACE-ENHANCED RAMAN SCATTERING (SERS)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/172908

id CONICETDig_a45f79a5911141ffc1dea4f4fea8eb65
oai_identifier_str oai:ri.conicet.gov.ar:11336/172908
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic CavitiesAhmed, AqeelBanjac, KarlaVerlekar, Sachin S.Cometto, Fernando PabloLingenfelder, Magalí AlejandraGalland, ChristopheDARK FIELD (DF) SCATTERINGNANOPARTICLE ON MIRROR (NPOM)PLASMONIC NANOCAVITIESSCANNING TUNNELING MICROSCOPY (STM)SELF-ASSEMBLED MONOLAYER (SAM)SURFACE-ENHANCED RAMAN SCATTERING (SERS)https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Immense field enhancement and nanoscale confinement of light are possible within nanoparticle-on-mirror (NPoM) plasmonic resonators, which enable novel optically activated physical and chemical phenomena and render these nanocavities greatly sensitive to minute structural changes, down to the atomic scale. Although a few of these structural parameters, primarily linked to the nanoparticle and the mirror morphology, have been identified, the impact of molecular assembly and organization of the spacer layer between them has often been left uncharacterized. Here, we experimentally investigate how the complex and reconfigurable nature of a thiol-based self-Assembled monolayer (SAM) adsorbed on the mirror surface impacts the optical properties of the NPoMs. We fabricate NPoMs with distinct molecular organizations by controlling the incubation time of the mirror in the thiol solution. Afterward, we investigate the structural changes that occur under laser irradiation by tracking the bonding dipole plasmon mode, while also monitoring Stokes and anti-Stokes Raman scattering from the molecules as a probe of their integrity. First, we find an effective decrease in the SAM height as the laser power increases, compatible with an irreversible change of molecule orientation caused by heating. Second, we observe that the nanocavities prepared with a densely packed and more ordered monolayer of molecules are more prone to changes in their resonance compared to samples with sparser and more disordered SAMs. Our measurements indicate that molecular orientation and packing on the mirror surface play a key role in determining the stability of NPoM structures and hence highlight the under-recognized significance of SAM characterization in the development of NPoM-based applications.Fil: Ahmed, Aqeel. École Polytechnique Fédérale de Lausanne; SuizaFil: Banjac, Karla. École Polytechnique Fédérale de Lausanne; SuizaFil: Verlekar, Sachin S.. École Polytechnique Fédérale de Lausanne; SuizaFil: Cometto, Fernando Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. École Polytechnique Fédérale de Lausanne; Suiza. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica; ArgentinaFil: Lingenfelder, Magalí Alejandra. École Polytechnique Fédérale de Lausanne; SuizaFil: Galland, Christophe. École Polytechnique Fédérale de Lausanne; SuizaAmerican Chemical Society2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172908Ahmed, Aqeel; Banjac, Karla; Verlekar, Sachin S.; Cometto, Fernando Pablo; Lingenfelder, Magalí Alejandra; et al.; Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities; American Chemical Society; ACS Photonics; 8; 6; 6-2021; 1863-18722330-4022CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acsphotonics.1c00645info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsphotonics.1c00645info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T09:07:18Zoai:ri.conicet.gov.ar:11336/172908instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 09:07:18.708CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities
title Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities
spellingShingle Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities
Ahmed, Aqeel
DARK FIELD (DF) SCATTERING
NANOPARTICLE ON MIRROR (NPOM)
PLASMONIC NANOCAVITIES
SCANNING TUNNELING MICROSCOPY (STM)
SELF-ASSEMBLED MONOLAYER (SAM)
SURFACE-ENHANCED RAMAN SCATTERING (SERS)
title_short Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities
title_full Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities
title_fullStr Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities
title_full_unstemmed Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities
title_sort Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities
dc.creator.none.fl_str_mv Ahmed, Aqeel
Banjac, Karla
Verlekar, Sachin S.
Cometto, Fernando Pablo
Lingenfelder, Magalí Alejandra
Galland, Christophe
author Ahmed, Aqeel
author_facet Ahmed, Aqeel
Banjac, Karla
Verlekar, Sachin S.
Cometto, Fernando Pablo
Lingenfelder, Magalí Alejandra
Galland, Christophe
author_role author
author2 Banjac, Karla
Verlekar, Sachin S.
Cometto, Fernando Pablo
Lingenfelder, Magalí Alejandra
Galland, Christophe
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv DARK FIELD (DF) SCATTERING
NANOPARTICLE ON MIRROR (NPOM)
PLASMONIC NANOCAVITIES
SCANNING TUNNELING MICROSCOPY (STM)
SELF-ASSEMBLED MONOLAYER (SAM)
SURFACE-ENHANCED RAMAN SCATTERING (SERS)
topic DARK FIELD (DF) SCATTERING
NANOPARTICLE ON MIRROR (NPOM)
PLASMONIC NANOCAVITIES
SCANNING TUNNELING MICROSCOPY (STM)
SELF-ASSEMBLED MONOLAYER (SAM)
SURFACE-ENHANCED RAMAN SCATTERING (SERS)
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Immense field enhancement and nanoscale confinement of light are possible within nanoparticle-on-mirror (NPoM) plasmonic resonators, which enable novel optically activated physical and chemical phenomena and render these nanocavities greatly sensitive to minute structural changes, down to the atomic scale. Although a few of these structural parameters, primarily linked to the nanoparticle and the mirror morphology, have been identified, the impact of molecular assembly and organization of the spacer layer between them has often been left uncharacterized. Here, we experimentally investigate how the complex and reconfigurable nature of a thiol-based self-Assembled monolayer (SAM) adsorbed on the mirror surface impacts the optical properties of the NPoMs. We fabricate NPoMs with distinct molecular organizations by controlling the incubation time of the mirror in the thiol solution. Afterward, we investigate the structural changes that occur under laser irradiation by tracking the bonding dipole plasmon mode, while also monitoring Stokes and anti-Stokes Raman scattering from the molecules as a probe of their integrity. First, we find an effective decrease in the SAM height as the laser power increases, compatible with an irreversible change of molecule orientation caused by heating. Second, we observe that the nanocavities prepared with a densely packed and more ordered monolayer of molecules are more prone to changes in their resonance compared to samples with sparser and more disordered SAMs. Our measurements indicate that molecular orientation and packing on the mirror surface play a key role in determining the stability of NPoM structures and hence highlight the under-recognized significance of SAM characterization in the development of NPoM-based applications.
Fil: Ahmed, Aqeel. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Banjac, Karla. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Verlekar, Sachin S.. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Cometto, Fernando Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. École Polytechnique Fédérale de Lausanne; Suiza. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica; Argentina
Fil: Lingenfelder, Magalí Alejandra. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Galland, Christophe. École Polytechnique Fédérale de Lausanne; Suiza
description Immense field enhancement and nanoscale confinement of light are possible within nanoparticle-on-mirror (NPoM) plasmonic resonators, which enable novel optically activated physical and chemical phenomena and render these nanocavities greatly sensitive to minute structural changes, down to the atomic scale. Although a few of these structural parameters, primarily linked to the nanoparticle and the mirror morphology, have been identified, the impact of molecular assembly and organization of the spacer layer between them has often been left uncharacterized. Here, we experimentally investigate how the complex and reconfigurable nature of a thiol-based self-Assembled monolayer (SAM) adsorbed on the mirror surface impacts the optical properties of the NPoMs. We fabricate NPoMs with distinct molecular organizations by controlling the incubation time of the mirror in the thiol solution. Afterward, we investigate the structural changes that occur under laser irradiation by tracking the bonding dipole plasmon mode, while also monitoring Stokes and anti-Stokes Raman scattering from the molecules as a probe of their integrity. First, we find an effective decrease in the SAM height as the laser power increases, compatible with an irreversible change of molecule orientation caused by heating. Second, we observe that the nanocavities prepared with a densely packed and more ordered monolayer of molecules are more prone to changes in their resonance compared to samples with sparser and more disordered SAMs. Our measurements indicate that molecular orientation and packing on the mirror surface play a key role in determining the stability of NPoM structures and hence highlight the under-recognized significance of SAM characterization in the development of NPoM-based applications.
publishDate 2021
dc.date.none.fl_str_mv 2021-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/172908
Ahmed, Aqeel; Banjac, Karla; Verlekar, Sachin S.; Cometto, Fernando Pablo; Lingenfelder, Magalí Alejandra; et al.; Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities; American Chemical Society; ACS Photonics; 8; 6; 6-2021; 1863-1872
2330-4022
CONICET Digital
CONICET
url http://hdl.handle.net/11336/172908
identifier_str_mv Ahmed, Aqeel; Banjac, Karla; Verlekar, Sachin S.; Cometto, Fernando Pablo; Lingenfelder, Magalí Alejandra; et al.; Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities; American Chemical Society; ACS Photonics; 8; 6; 6-2021; 1863-1872
2330-4022
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/acsphotonics.1c00645
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsphotonics.1c00645
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1849873517175111680
score 13.011256