Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities
- Autores
- Ahmed, Aqeel; Banjac, Karla; Verlekar, Sachin S.; Cometto, Fernando Pablo; Lingenfelder, Magalí Alejandra; Galland, Christophe
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Immense field enhancement and nanoscale confinement of light are possible within nanoparticle-on-mirror (NPoM) plasmonic resonators, which enable novel optically activated physical and chemical phenomena and render these nanocavities greatly sensitive to minute structural changes, down to the atomic scale. Although a few of these structural parameters, primarily linked to the nanoparticle and the mirror morphology, have been identified, the impact of molecular assembly and organization of the spacer layer between them has often been left uncharacterized. Here, we experimentally investigate how the complex and reconfigurable nature of a thiol-based self-Assembled monolayer (SAM) adsorbed on the mirror surface impacts the optical properties of the NPoMs. We fabricate NPoMs with distinct molecular organizations by controlling the incubation time of the mirror in the thiol solution. Afterward, we investigate the structural changes that occur under laser irradiation by tracking the bonding dipole plasmon mode, while also monitoring Stokes and anti-Stokes Raman scattering from the molecules as a probe of their integrity. First, we find an effective decrease in the SAM height as the laser power increases, compatible with an irreversible change of molecule orientation caused by heating. Second, we observe that the nanocavities prepared with a densely packed and more ordered monolayer of molecules are more prone to changes in their resonance compared to samples with sparser and more disordered SAMs. Our measurements indicate that molecular orientation and packing on the mirror surface play a key role in determining the stability of NPoM structures and hence highlight the under-recognized significance of SAM characterization in the development of NPoM-based applications.
Fil: Ahmed, Aqeel. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Banjac, Karla. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Verlekar, Sachin S.. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Cometto, Fernando Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. École Polytechnique Fédérale de Lausanne; Suiza. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica; Argentina
Fil: Lingenfelder, Magalí Alejandra. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Galland, Christophe. École Polytechnique Fédérale de Lausanne; Suiza - Materia
-
DARK FIELD (DF) SCATTERING
NANOPARTICLE ON MIRROR (NPOM)
PLASMONIC NANOCAVITIES
SCANNING TUNNELING MICROSCOPY (STM)
SELF-ASSEMBLED MONOLAYER (SAM)
SURFACE-ENHANCED RAMAN SCATTERING (SERS) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/172908
Ver los metadatos del registro completo
| id |
CONICETDig_a45f79a5911141ffc1dea4f4fea8eb65 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/172908 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic CavitiesAhmed, AqeelBanjac, KarlaVerlekar, Sachin S.Cometto, Fernando PabloLingenfelder, Magalí AlejandraGalland, ChristopheDARK FIELD (DF) SCATTERINGNANOPARTICLE ON MIRROR (NPOM)PLASMONIC NANOCAVITIESSCANNING TUNNELING MICROSCOPY (STM)SELF-ASSEMBLED MONOLAYER (SAM)SURFACE-ENHANCED RAMAN SCATTERING (SERS)https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Immense field enhancement and nanoscale confinement of light are possible within nanoparticle-on-mirror (NPoM) plasmonic resonators, which enable novel optically activated physical and chemical phenomena and render these nanocavities greatly sensitive to minute structural changes, down to the atomic scale. Although a few of these structural parameters, primarily linked to the nanoparticle and the mirror morphology, have been identified, the impact of molecular assembly and organization of the spacer layer between them has often been left uncharacterized. Here, we experimentally investigate how the complex and reconfigurable nature of a thiol-based self-Assembled monolayer (SAM) adsorbed on the mirror surface impacts the optical properties of the NPoMs. We fabricate NPoMs with distinct molecular organizations by controlling the incubation time of the mirror in the thiol solution. Afterward, we investigate the structural changes that occur under laser irradiation by tracking the bonding dipole plasmon mode, while also monitoring Stokes and anti-Stokes Raman scattering from the molecules as a probe of their integrity. First, we find an effective decrease in the SAM height as the laser power increases, compatible with an irreversible change of molecule orientation caused by heating. Second, we observe that the nanocavities prepared with a densely packed and more ordered monolayer of molecules are more prone to changes in their resonance compared to samples with sparser and more disordered SAMs. Our measurements indicate that molecular orientation and packing on the mirror surface play a key role in determining the stability of NPoM structures and hence highlight the under-recognized significance of SAM characterization in the development of NPoM-based applications.Fil: Ahmed, Aqeel. École Polytechnique Fédérale de Lausanne; SuizaFil: Banjac, Karla. École Polytechnique Fédérale de Lausanne; SuizaFil: Verlekar, Sachin S.. École Polytechnique Fédérale de Lausanne; SuizaFil: Cometto, Fernando Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. École Polytechnique Fédérale de Lausanne; Suiza. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica; ArgentinaFil: Lingenfelder, Magalí Alejandra. École Polytechnique Fédérale de Lausanne; SuizaFil: Galland, Christophe. École Polytechnique Fédérale de Lausanne; SuizaAmerican Chemical Society2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172908Ahmed, Aqeel; Banjac, Karla; Verlekar, Sachin S.; Cometto, Fernando Pablo; Lingenfelder, Magalí Alejandra; et al.; Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities; American Chemical Society; ACS Photonics; 8; 6; 6-2021; 1863-18722330-4022CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acsphotonics.1c00645info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsphotonics.1c00645info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T09:07:18Zoai:ri.conicet.gov.ar:11336/172908instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 09:07:18.708CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities |
| title |
Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities |
| spellingShingle |
Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities Ahmed, Aqeel DARK FIELD (DF) SCATTERING NANOPARTICLE ON MIRROR (NPOM) PLASMONIC NANOCAVITIES SCANNING TUNNELING MICROSCOPY (STM) SELF-ASSEMBLED MONOLAYER (SAM) SURFACE-ENHANCED RAMAN SCATTERING (SERS) |
| title_short |
Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities |
| title_full |
Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities |
| title_fullStr |
Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities |
| title_full_unstemmed |
Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities |
| title_sort |
Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities |
| dc.creator.none.fl_str_mv |
Ahmed, Aqeel Banjac, Karla Verlekar, Sachin S. Cometto, Fernando Pablo Lingenfelder, Magalí Alejandra Galland, Christophe |
| author |
Ahmed, Aqeel |
| author_facet |
Ahmed, Aqeel Banjac, Karla Verlekar, Sachin S. Cometto, Fernando Pablo Lingenfelder, Magalí Alejandra Galland, Christophe |
| author_role |
author |
| author2 |
Banjac, Karla Verlekar, Sachin S. Cometto, Fernando Pablo Lingenfelder, Magalí Alejandra Galland, Christophe |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
DARK FIELD (DF) SCATTERING NANOPARTICLE ON MIRROR (NPOM) PLASMONIC NANOCAVITIES SCANNING TUNNELING MICROSCOPY (STM) SELF-ASSEMBLED MONOLAYER (SAM) SURFACE-ENHANCED RAMAN SCATTERING (SERS) |
| topic |
DARK FIELD (DF) SCATTERING NANOPARTICLE ON MIRROR (NPOM) PLASMONIC NANOCAVITIES SCANNING TUNNELING MICROSCOPY (STM) SELF-ASSEMBLED MONOLAYER (SAM) SURFACE-ENHANCED RAMAN SCATTERING (SERS) |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Immense field enhancement and nanoscale confinement of light are possible within nanoparticle-on-mirror (NPoM) plasmonic resonators, which enable novel optically activated physical and chemical phenomena and render these nanocavities greatly sensitive to minute structural changes, down to the atomic scale. Although a few of these structural parameters, primarily linked to the nanoparticle and the mirror morphology, have been identified, the impact of molecular assembly and organization of the spacer layer between them has often been left uncharacterized. Here, we experimentally investigate how the complex and reconfigurable nature of a thiol-based self-Assembled monolayer (SAM) adsorbed on the mirror surface impacts the optical properties of the NPoMs. We fabricate NPoMs with distinct molecular organizations by controlling the incubation time of the mirror in the thiol solution. Afterward, we investigate the structural changes that occur under laser irradiation by tracking the bonding dipole plasmon mode, while also monitoring Stokes and anti-Stokes Raman scattering from the molecules as a probe of their integrity. First, we find an effective decrease in the SAM height as the laser power increases, compatible with an irreversible change of molecule orientation caused by heating. Second, we observe that the nanocavities prepared with a densely packed and more ordered monolayer of molecules are more prone to changes in their resonance compared to samples with sparser and more disordered SAMs. Our measurements indicate that molecular orientation and packing on the mirror surface play a key role in determining the stability of NPoM structures and hence highlight the under-recognized significance of SAM characterization in the development of NPoM-based applications. Fil: Ahmed, Aqeel. École Polytechnique Fédérale de Lausanne; Suiza Fil: Banjac, Karla. École Polytechnique Fédérale de Lausanne; Suiza Fil: Verlekar, Sachin S.. École Polytechnique Fédérale de Lausanne; Suiza Fil: Cometto, Fernando Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. École Polytechnique Fédérale de Lausanne; Suiza. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica; Argentina Fil: Lingenfelder, Magalí Alejandra. École Polytechnique Fédérale de Lausanne; Suiza Fil: Galland, Christophe. École Polytechnique Fédérale de Lausanne; Suiza |
| description |
Immense field enhancement and nanoscale confinement of light are possible within nanoparticle-on-mirror (NPoM) plasmonic resonators, which enable novel optically activated physical and chemical phenomena and render these nanocavities greatly sensitive to minute structural changes, down to the atomic scale. Although a few of these structural parameters, primarily linked to the nanoparticle and the mirror morphology, have been identified, the impact of molecular assembly and organization of the spacer layer between them has often been left uncharacterized. Here, we experimentally investigate how the complex and reconfigurable nature of a thiol-based self-Assembled monolayer (SAM) adsorbed on the mirror surface impacts the optical properties of the NPoMs. We fabricate NPoMs with distinct molecular organizations by controlling the incubation time of the mirror in the thiol solution. Afterward, we investigate the structural changes that occur under laser irradiation by tracking the bonding dipole plasmon mode, while also monitoring Stokes and anti-Stokes Raman scattering from the molecules as a probe of their integrity. First, we find an effective decrease in the SAM height as the laser power increases, compatible with an irreversible change of molecule orientation caused by heating. Second, we observe that the nanocavities prepared with a densely packed and more ordered monolayer of molecules are more prone to changes in their resonance compared to samples with sparser and more disordered SAMs. Our measurements indicate that molecular orientation and packing on the mirror surface play a key role in determining the stability of NPoM structures and hence highlight the under-recognized significance of SAM characterization in the development of NPoM-based applications. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/172908 Ahmed, Aqeel; Banjac, Karla; Verlekar, Sachin S.; Cometto, Fernando Pablo; Lingenfelder, Magalí Alejandra; et al.; Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities; American Chemical Society; ACS Photonics; 8; 6; 6-2021; 1863-1872 2330-4022 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/172908 |
| identifier_str_mv |
Ahmed, Aqeel; Banjac, Karla; Verlekar, Sachin S.; Cometto, Fernando Pablo; Lingenfelder, Magalí Alejandra; et al.; Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities; American Chemical Society; ACS Photonics; 8; 6; 6-2021; 1863-1872 2330-4022 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/acsphotonics.1c00645 info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsphotonics.1c00645 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Chemical Society |
| publisher.none.fl_str_mv |
American Chemical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1849873517175111680 |
| score |
13.011256 |