Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion
- Autores
- Caldarola, Martín; Albella, Pablo; Cortés, Emiliano; Rahmani, Mohsen; Roschuk, Tyler; Grinblat, Gustavo Sergio; Oulton, Rupert F.; Bragas, Andrea Veronica; Maier, Stefan A.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field ?hot spots?. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interaction, highly enhanced nonlinearities, and nanoscale waveguiding. Unfortunately, these large enhancements come with the price of high optical losses due to absorption in the metal, severely limiting real-world applications. For example, localized heating strongly limits the total power that can be delivered to a nanoscale field hot spot before the nanostructure melts and reshapes, affecting their nanoscale lighting and photonic modulation capabilities. The interaction and properties of nanoemmitters and molecules close to the nanoantennas can also be modified due to the local heat. Via the realization of a novel nanophotonic platform based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-heat conversion, we demonstrate here an approach that overcomes these limitations. We show, that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence (SEF) and surface enhanced Raman scattering (SERS), while at the same time producing a negligible temperature increase in their hot spots and surrounding environments.
Fil: Caldarola, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; Argentina
Fil: Albella, Pablo. Imperial College London; Reino Unido
Fil: Cortés, Emiliano. Imperial College London; Reino Unido
Fil: Rahmani, Mohsen. Imperial College London; Reino Unido
Fil: Roschuk, Tyler. Imperial College London; Reino Unido
Fil: Grinblat, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; Argentina
Fil: Oulton, Rupert F.. Imperial College London; Reino Unido
Fil: Bragas, Andrea Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; Argentina
Fil: Maier, Stefan A.. Imperial College London; Reino Unido - Materia
-
dielectric nanoantennas
surface enhanced Raman scattering
surface enhanced fluorescence
ultra-low heat conversion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/44930
Ver los metadatos del registro completo
| id |
CONICETDig_6ce41c1d70c4a67c6a8e3060617d783f |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/44930 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversionCaldarola, MartínAlbella, PabloCortés, EmilianoRahmani, MohsenRoschuk, TylerGrinblat, Gustavo SergioOulton, Rupert F.Bragas, Andrea VeronicaMaier, Stefan A.dielectric nanoantennassurface enhanced Raman scatteringsurface enhanced fluorescenceultra-low heat conversionhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field ?hot spots?. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interaction, highly enhanced nonlinearities, and nanoscale waveguiding. Unfortunately, these large enhancements come with the price of high optical losses due to absorption in the metal, severely limiting real-world applications. For example, localized heating strongly limits the total power that can be delivered to a nanoscale field hot spot before the nanostructure melts and reshapes, affecting their nanoscale lighting and photonic modulation capabilities. The interaction and properties of nanoemmitters and molecules close to the nanoantennas can also be modified due to the local heat. Via the realization of a novel nanophotonic platform based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-heat conversion, we demonstrate here an approach that overcomes these limitations. We show, that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence (SEF) and surface enhanced Raman scattering (SERS), while at the same time producing a negligible temperature increase in their hot spots and surrounding environments.Fil: Caldarola, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; ArgentinaFil: Albella, Pablo. Imperial College London; Reino UnidoFil: Cortés, Emiliano. Imperial College London; Reino UnidoFil: Rahmani, Mohsen. Imperial College London; Reino UnidoFil: Roschuk, Tyler. Imperial College London; Reino UnidoFil: Grinblat, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; ArgentinaFil: Oulton, Rupert F.. Imperial College London; Reino UnidoFil: Bragas, Andrea Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; ArgentinaFil: Maier, Stefan A.. Imperial College London; Reino UnidoNature Publishing Group2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44930Caldarola, Martín; Albella, Pablo; Cortés, Emiliano; Rahmani, Mohsen; Roschuk, Tyler; et al.; Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion; Nature Publishing Group; Nature Communications; 6; 1; 8-2015; 1-82041-1723CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms8915info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/ncomms8915info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:42:28Zoai:ri.conicet.gov.ar:11336/44930instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:42:28.919CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion |
| title |
Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion |
| spellingShingle |
Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion Caldarola, Martín dielectric nanoantennas surface enhanced Raman scattering surface enhanced fluorescence ultra-low heat conversion |
| title_short |
Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion |
| title_full |
Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion |
| title_fullStr |
Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion |
| title_full_unstemmed |
Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion |
| title_sort |
Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion |
| dc.creator.none.fl_str_mv |
Caldarola, Martín Albella, Pablo Cortés, Emiliano Rahmani, Mohsen Roschuk, Tyler Grinblat, Gustavo Sergio Oulton, Rupert F. Bragas, Andrea Veronica Maier, Stefan A. |
| author |
Caldarola, Martín |
| author_facet |
Caldarola, Martín Albella, Pablo Cortés, Emiliano Rahmani, Mohsen Roschuk, Tyler Grinblat, Gustavo Sergio Oulton, Rupert F. Bragas, Andrea Veronica Maier, Stefan A. |
| author_role |
author |
| author2 |
Albella, Pablo Cortés, Emiliano Rahmani, Mohsen Roschuk, Tyler Grinblat, Gustavo Sergio Oulton, Rupert F. Bragas, Andrea Veronica Maier, Stefan A. |
| author2_role |
author author author author author author author author |
| dc.subject.none.fl_str_mv |
dielectric nanoantennas surface enhanced Raman scattering surface enhanced fluorescence ultra-low heat conversion |
| topic |
dielectric nanoantennas surface enhanced Raman scattering surface enhanced fluorescence ultra-low heat conversion |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field ?hot spots?. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interaction, highly enhanced nonlinearities, and nanoscale waveguiding. Unfortunately, these large enhancements come with the price of high optical losses due to absorption in the metal, severely limiting real-world applications. For example, localized heating strongly limits the total power that can be delivered to a nanoscale field hot spot before the nanostructure melts and reshapes, affecting their nanoscale lighting and photonic modulation capabilities. The interaction and properties of nanoemmitters and molecules close to the nanoantennas can also be modified due to the local heat. Via the realization of a novel nanophotonic platform based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-heat conversion, we demonstrate here an approach that overcomes these limitations. We show, that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence (SEF) and surface enhanced Raman scattering (SERS), while at the same time producing a negligible temperature increase in their hot spots and surrounding environments. Fil: Caldarola, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; Argentina Fil: Albella, Pablo. Imperial College London; Reino Unido Fil: Cortés, Emiliano. Imperial College London; Reino Unido Fil: Rahmani, Mohsen. Imperial College London; Reino Unido Fil: Roschuk, Tyler. Imperial College London; Reino Unido Fil: Grinblat, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; Argentina Fil: Oulton, Rupert F.. Imperial College London; Reino Unido Fil: Bragas, Andrea Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; Argentina Fil: Maier, Stefan A.. Imperial College London; Reino Unido |
| description |
Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field ?hot spots?. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interaction, highly enhanced nonlinearities, and nanoscale waveguiding. Unfortunately, these large enhancements come with the price of high optical losses due to absorption in the metal, severely limiting real-world applications. For example, localized heating strongly limits the total power that can be delivered to a nanoscale field hot spot before the nanostructure melts and reshapes, affecting their nanoscale lighting and photonic modulation capabilities. The interaction and properties of nanoemmitters and molecules close to the nanoantennas can also be modified due to the local heat. Via the realization of a novel nanophotonic platform based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-heat conversion, we demonstrate here an approach that overcomes these limitations. We show, that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence (SEF) and surface enhanced Raman scattering (SERS), while at the same time producing a negligible temperature increase in their hot spots and surrounding environments. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/44930 Caldarola, Martín; Albella, Pablo; Cortés, Emiliano; Rahmani, Mohsen; Roschuk, Tyler; et al.; Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion; Nature Publishing Group; Nature Communications; 6; 1; 8-2015; 1-8 2041-1723 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/44930 |
| identifier_str_mv |
Caldarola, Martín; Albella, Pablo; Cortés, Emiliano; Rahmani, Mohsen; Roschuk, Tyler; et al.; Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion; Nature Publishing Group; Nature Communications; 6; 1; 8-2015; 1-8 2041-1723 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms8915 info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/ncomms8915 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Nature Publishing Group |
| publisher.none.fl_str_mv |
Nature Publishing Group |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847426341189713920 |
| score |
13.10058 |