Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion

Autores
Caldarola, Martín; Albella, Pablo; Cortés, Emiliano; Rahmani, Mohsen; Roschuk, Tyler; Grinblat, Gustavo Sergio; Oulton, Rupert F.; Bragas, Andrea Veronica; Maier, Stefan A.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field ?hot spots?. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interaction, highly enhanced nonlinearities, and nanoscale waveguiding. Unfortunately, these large enhancements come with the price of high optical losses due to absorption in the metal, severely limiting real-world applications. For example, localized heating strongly limits the total power that can be delivered to a nanoscale field hot spot before the nanostructure melts and reshapes, affecting their nanoscale lighting and photonic modulation capabilities. The interaction and properties of nanoemmitters and molecules close to the nanoantennas can also be modified due to the local heat. Via the realization of a novel nanophotonic platform based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-heat conversion, we demonstrate here an approach that overcomes these limitations. We show, that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence (SEF) and surface enhanced Raman scattering (SERS), while at the same time producing a negligible temperature increase in their hot spots and surrounding environments.
Fil: Caldarola, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; Argentina
Fil: Albella, Pablo. Imperial College London; Reino Unido
Fil: Cortés, Emiliano. Imperial College London; Reino Unido
Fil: Rahmani, Mohsen. Imperial College London; Reino Unido
Fil: Roschuk, Tyler. Imperial College London; Reino Unido
Fil: Grinblat, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; Argentina
Fil: Oulton, Rupert F.. Imperial College London; Reino Unido
Fil: Bragas, Andrea Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; Argentina
Fil: Maier, Stefan A.. Imperial College London; Reino Unido
Materia
dielectric nanoantennas
surface enhanced Raman scattering
surface enhanced fluorescence
ultra-low heat conversion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/44930

id CONICETDig_6ce41c1d70c4a67c6a8e3060617d783f
oai_identifier_str oai:ri.conicet.gov.ar:11336/44930
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversionCaldarola, MartínAlbella, PabloCortés, EmilianoRahmani, MohsenRoschuk, TylerGrinblat, Gustavo SergioOulton, Rupert F.Bragas, Andrea VeronicaMaier, Stefan A.dielectric nanoantennassurface enhanced Raman scatteringsurface enhanced fluorescenceultra-low heat conversionhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field ?hot spots?. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interaction, highly enhanced nonlinearities, and nanoscale waveguiding. Unfortunately, these large enhancements come with the price of high optical losses due to absorption in the metal, severely limiting real-world applications. For example, localized heating strongly limits the total power that can be delivered to a nanoscale field hot spot before the nanostructure melts and reshapes, affecting their nanoscale lighting and photonic modulation capabilities. The interaction and properties of nanoemmitters and molecules close to the nanoantennas can also be modified due to the local heat. Via the realization of a novel nanophotonic platform based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-heat conversion, we demonstrate here an approach that overcomes these limitations. We show, that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence (SEF) and surface enhanced Raman scattering (SERS), while at the same time producing a negligible temperature increase in their hot spots and surrounding environments.Fil: Caldarola, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; ArgentinaFil: Albella, Pablo. Imperial College London; Reino UnidoFil: Cortés, Emiliano. Imperial College London; Reino UnidoFil: Rahmani, Mohsen. Imperial College London; Reino UnidoFil: Roschuk, Tyler. Imperial College London; Reino UnidoFil: Grinblat, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; ArgentinaFil: Oulton, Rupert F.. Imperial College London; Reino UnidoFil: Bragas, Andrea Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; ArgentinaFil: Maier, Stefan A.. Imperial College London; Reino UnidoNature Publishing Group2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44930Caldarola, Martín; Albella, Pablo; Cortés, Emiliano; Rahmani, Mohsen; Roschuk, Tyler; et al.; Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion; Nature Publishing Group; Nature Communications; 6; 1; 8-2015; 1-82041-1723CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms8915info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/ncomms8915info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:42:28Zoai:ri.conicet.gov.ar:11336/44930instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:42:28.919CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion
title Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion
spellingShingle Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion
Caldarola, Martín
dielectric nanoantennas
surface enhanced Raman scattering
surface enhanced fluorescence
ultra-low heat conversion
title_short Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion
title_full Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion
title_fullStr Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion
title_full_unstemmed Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion
title_sort Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion
dc.creator.none.fl_str_mv Caldarola, Martín
Albella, Pablo
Cortés, Emiliano
Rahmani, Mohsen
Roschuk, Tyler
Grinblat, Gustavo Sergio
Oulton, Rupert F.
Bragas, Andrea Veronica
Maier, Stefan A.
author Caldarola, Martín
author_facet Caldarola, Martín
Albella, Pablo
Cortés, Emiliano
Rahmani, Mohsen
Roschuk, Tyler
Grinblat, Gustavo Sergio
Oulton, Rupert F.
Bragas, Andrea Veronica
Maier, Stefan A.
author_role author
author2 Albella, Pablo
Cortés, Emiliano
Rahmani, Mohsen
Roschuk, Tyler
Grinblat, Gustavo Sergio
Oulton, Rupert F.
Bragas, Andrea Veronica
Maier, Stefan A.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv dielectric nanoantennas
surface enhanced Raman scattering
surface enhanced fluorescence
ultra-low heat conversion
topic dielectric nanoantennas
surface enhanced Raman scattering
surface enhanced fluorescence
ultra-low heat conversion
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field ?hot spots?. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interaction, highly enhanced nonlinearities, and nanoscale waveguiding. Unfortunately, these large enhancements come with the price of high optical losses due to absorption in the metal, severely limiting real-world applications. For example, localized heating strongly limits the total power that can be delivered to a nanoscale field hot spot before the nanostructure melts and reshapes, affecting their nanoscale lighting and photonic modulation capabilities. The interaction and properties of nanoemmitters and molecules close to the nanoantennas can also be modified due to the local heat. Via the realization of a novel nanophotonic platform based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-heat conversion, we demonstrate here an approach that overcomes these limitations. We show, that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence (SEF) and surface enhanced Raman scattering (SERS), while at the same time producing a negligible temperature increase in their hot spots and surrounding environments.
Fil: Caldarola, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; Argentina
Fil: Albella, Pablo. Imperial College London; Reino Unido
Fil: Cortés, Emiliano. Imperial College London; Reino Unido
Fil: Rahmani, Mohsen. Imperial College London; Reino Unido
Fil: Roschuk, Tyler. Imperial College London; Reino Unido
Fil: Grinblat, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; Argentina
Fil: Oulton, Rupert F.. Imperial College London; Reino Unido
Fil: Bragas, Andrea Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Electrónica Cuántica; Argentina
Fil: Maier, Stefan A.. Imperial College London; Reino Unido
description Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field ?hot spots?. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interaction, highly enhanced nonlinearities, and nanoscale waveguiding. Unfortunately, these large enhancements come with the price of high optical losses due to absorption in the metal, severely limiting real-world applications. For example, localized heating strongly limits the total power that can be delivered to a nanoscale field hot spot before the nanostructure melts and reshapes, affecting their nanoscale lighting and photonic modulation capabilities. The interaction and properties of nanoemmitters and molecules close to the nanoantennas can also be modified due to the local heat. Via the realization of a novel nanophotonic platform based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-heat conversion, we demonstrate here an approach that overcomes these limitations. We show, that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence (SEF) and surface enhanced Raman scattering (SERS), while at the same time producing a negligible temperature increase in their hot spots and surrounding environments.
publishDate 2015
dc.date.none.fl_str_mv 2015-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/44930
Caldarola, Martín; Albella, Pablo; Cortés, Emiliano; Rahmani, Mohsen; Roschuk, Tyler; et al.; Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion; Nature Publishing Group; Nature Communications; 6; 1; 8-2015; 1-8
2041-1723
CONICET Digital
CONICET
url http://hdl.handle.net/11336/44930
identifier_str_mv Caldarola, Martín; Albella, Pablo; Cortés, Emiliano; Rahmani, Mohsen; Roschuk, Tyler; et al.; Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion; Nature Publishing Group; Nature Communications; 6; 1; 8-2015; 1-8
2041-1723
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms8915
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/ncomms8915
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847426341189713920
score 13.10058