Effect of Thermal Fluctuations in FMR Experiments in Uniaxial Magnetic Nanoparticles: Blocked vs. Superparamagnetic Regimes

Autores
de Biasi, Emilio; Lima Jr., Enio; Ramos, Carlos A.; Butera, Alejandro Ricardo; Zysler, Roberto Daniel
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present ferromagnetic resonance (FMR) experiments on two low-interacting nanoparticle systems: Fe3O4 and CoFe2O4 corresponding to low- and high-anisotropy cases, respectively. The spectra have been interpreted in terms of a phenomenological model which applies to the FMR of nanoparticles. The model includes the effect of thermal fluctuations in the FMR covering the range from the superparamagnetic (low-anisotropy-high-temperature) regime to the high-anisotropy-low-temperature situation. We have been able to explain several simultaneous features observed in the FMR spectra of a system of anisotropic nanoparticles when lowering the temperature that include: a decrease of the resonance field with a simultaneous linewidth increase and intensity reduction. These effects had been previously attributed to the existence of a ‘‘blocking-temperature’’ in the FMR. Our interpretation, however, shows that in a magnetic system with easy axes this FMR response originates in the temperature dependence of the dispersion relation. Also, applying the present model to the FMR within the hysteresis cycle it is possible to reproduce the irreversibilities occurring in the resonance spectra. Comparison of FMR and magnetization measurements show that the characteristic FMR time is not related to the inverse microwave frequency.
Fil: de Biasi, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina
Fil: Lima Jr., Enio. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina
Fil: Ramos, Carlos A.. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina
Fil: Butera, Alejandro Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina
Fil: Zysler, Roberto Daniel. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina
Materia
Ferromagnetic Resonance
Thermal Fluctuations
Bloking
Superparamagnetism
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/11062

id CONICETDig_a43a358179ded15040ec95a353654703
oai_identifier_str oai:ri.conicet.gov.ar:11336/11062
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effect of Thermal Fluctuations in FMR Experiments in Uniaxial Magnetic Nanoparticles: Blocked vs. Superparamagnetic Regimesde Biasi, EmilioLima Jr., EnioRamos, Carlos A.Butera, Alejandro RicardoZysler, Roberto DanielFerromagnetic ResonanceThermal FluctuationsBlokingSuperparamagnetismhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present ferromagnetic resonance (FMR) experiments on two low-interacting nanoparticle systems: Fe3O4 and CoFe2O4 corresponding to low- and high-anisotropy cases, respectively. The spectra have been interpreted in terms of a phenomenological model which applies to the FMR of nanoparticles. The model includes the effect of thermal fluctuations in the FMR covering the range from the superparamagnetic (low-anisotropy-high-temperature) regime to the high-anisotropy-low-temperature situation. We have been able to explain several simultaneous features observed in the FMR spectra of a system of anisotropic nanoparticles when lowering the temperature that include: a decrease of the resonance field with a simultaneous linewidth increase and intensity reduction. These effects had been previously attributed to the existence of a ‘‘blocking-temperature’’ in the FMR. Our interpretation, however, shows that in a magnetic system with easy axes this FMR response originates in the temperature dependence of the dispersion relation. Also, applying the present model to the FMR within the hysteresis cycle it is possible to reproduce the irreversibilities occurring in the resonance spectra. Comparison of FMR and magnetization measurements show that the characteristic FMR time is not related to the inverse microwave frequency.Fil: de Biasi, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); ArgentinaFil: Lima Jr., Enio. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); ArgentinaFil: Ramos, Carlos A.. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); ArgentinaFil: Butera, Alejandro Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); ArgentinaFil: Zysler, Roberto Daniel. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); ArgentinaElsevier Science2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11062de Biasi, Emilio; Lima Jr., Enio; Ramos, Carlos A.; Butera, Alejandro Ricardo; Zysler, Roberto Daniel; Effect of Thermal Fluctuations in FMR Experiments in Uniaxial Magnetic Nanoparticles: Blocked vs. Superparamagnetic Regimes; Elsevier Science; Journal Of Magnetism And Magnetic Materials; 326; 1-2013; 138-1460304-8853enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304885312007342info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmmm.2012.08.046info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:00:50Zoai:ri.conicet.gov.ar:11336/11062instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:00:50.678CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effect of Thermal Fluctuations in FMR Experiments in Uniaxial Magnetic Nanoparticles: Blocked vs. Superparamagnetic Regimes
title Effect of Thermal Fluctuations in FMR Experiments in Uniaxial Magnetic Nanoparticles: Blocked vs. Superparamagnetic Regimes
spellingShingle Effect of Thermal Fluctuations in FMR Experiments in Uniaxial Magnetic Nanoparticles: Blocked vs. Superparamagnetic Regimes
de Biasi, Emilio
Ferromagnetic Resonance
Thermal Fluctuations
Bloking
Superparamagnetism
title_short Effect of Thermal Fluctuations in FMR Experiments in Uniaxial Magnetic Nanoparticles: Blocked vs. Superparamagnetic Regimes
title_full Effect of Thermal Fluctuations in FMR Experiments in Uniaxial Magnetic Nanoparticles: Blocked vs. Superparamagnetic Regimes
title_fullStr Effect of Thermal Fluctuations in FMR Experiments in Uniaxial Magnetic Nanoparticles: Blocked vs. Superparamagnetic Regimes
title_full_unstemmed Effect of Thermal Fluctuations in FMR Experiments in Uniaxial Magnetic Nanoparticles: Blocked vs. Superparamagnetic Regimes
title_sort Effect of Thermal Fluctuations in FMR Experiments in Uniaxial Magnetic Nanoparticles: Blocked vs. Superparamagnetic Regimes
dc.creator.none.fl_str_mv de Biasi, Emilio
Lima Jr., Enio
Ramos, Carlos A.
Butera, Alejandro Ricardo
Zysler, Roberto Daniel
author de Biasi, Emilio
author_facet de Biasi, Emilio
Lima Jr., Enio
Ramos, Carlos A.
Butera, Alejandro Ricardo
Zysler, Roberto Daniel
author_role author
author2 Lima Jr., Enio
Ramos, Carlos A.
Butera, Alejandro Ricardo
Zysler, Roberto Daniel
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ferromagnetic Resonance
Thermal Fluctuations
Bloking
Superparamagnetism
topic Ferromagnetic Resonance
Thermal Fluctuations
Bloking
Superparamagnetism
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present ferromagnetic resonance (FMR) experiments on two low-interacting nanoparticle systems: Fe3O4 and CoFe2O4 corresponding to low- and high-anisotropy cases, respectively. The spectra have been interpreted in terms of a phenomenological model which applies to the FMR of nanoparticles. The model includes the effect of thermal fluctuations in the FMR covering the range from the superparamagnetic (low-anisotropy-high-temperature) regime to the high-anisotropy-low-temperature situation. We have been able to explain several simultaneous features observed in the FMR spectra of a system of anisotropic nanoparticles when lowering the temperature that include: a decrease of the resonance field with a simultaneous linewidth increase and intensity reduction. These effects had been previously attributed to the existence of a ‘‘blocking-temperature’’ in the FMR. Our interpretation, however, shows that in a magnetic system with easy axes this FMR response originates in the temperature dependence of the dispersion relation. Also, applying the present model to the FMR within the hysteresis cycle it is possible to reproduce the irreversibilities occurring in the resonance spectra. Comparison of FMR and magnetization measurements show that the characteristic FMR time is not related to the inverse microwave frequency.
Fil: de Biasi, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina
Fil: Lima Jr., Enio. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina
Fil: Ramos, Carlos A.. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina
Fil: Butera, Alejandro Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina
Fil: Zysler, Roberto Daniel. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina
description We present ferromagnetic resonance (FMR) experiments on two low-interacting nanoparticle systems: Fe3O4 and CoFe2O4 corresponding to low- and high-anisotropy cases, respectively. The spectra have been interpreted in terms of a phenomenological model which applies to the FMR of nanoparticles. The model includes the effect of thermal fluctuations in the FMR covering the range from the superparamagnetic (low-anisotropy-high-temperature) regime to the high-anisotropy-low-temperature situation. We have been able to explain several simultaneous features observed in the FMR spectra of a system of anisotropic nanoparticles when lowering the temperature that include: a decrease of the resonance field with a simultaneous linewidth increase and intensity reduction. These effects had been previously attributed to the existence of a ‘‘blocking-temperature’’ in the FMR. Our interpretation, however, shows that in a magnetic system with easy axes this FMR response originates in the temperature dependence of the dispersion relation. Also, applying the present model to the FMR within the hysteresis cycle it is possible to reproduce the irreversibilities occurring in the resonance spectra. Comparison of FMR and magnetization measurements show that the characteristic FMR time is not related to the inverse microwave frequency.
publishDate 2013
dc.date.none.fl_str_mv 2013-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/11062
de Biasi, Emilio; Lima Jr., Enio; Ramos, Carlos A.; Butera, Alejandro Ricardo; Zysler, Roberto Daniel; Effect of Thermal Fluctuations in FMR Experiments in Uniaxial Magnetic Nanoparticles: Blocked vs. Superparamagnetic Regimes; Elsevier Science; Journal Of Magnetism And Magnetic Materials; 326; 1-2013; 138-146
0304-8853
url http://hdl.handle.net/11336/11062
identifier_str_mv de Biasi, Emilio; Lima Jr., Enio; Ramos, Carlos A.; Butera, Alejandro Ricardo; Zysler, Roberto Daniel; Effect of Thermal Fluctuations in FMR Experiments in Uniaxial Magnetic Nanoparticles: Blocked vs. Superparamagnetic Regimes; Elsevier Science; Journal Of Magnetism And Magnetic Materials; 326; 1-2013; 138-146
0304-8853
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304885312007342
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmmm.2012.08.046
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613794559426560
score 13.070432