Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions

Autores
Bueno, Pablo; Cano, Pablo A.; Moreno, Javier; Van Der Velde, Guido Gustavo
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The construction of quasitopological gravities in three-dimensions requires coupling a scalar field to the metric. As shown in [arXiv:2104.10172], the resulting “electromagnetic” quasitopological (EQT) theories admit charged black hole solutions characterized by a single-function for the metric, −⁢=−1 ⁢≡⁡(), and a simple azimuthal form for the scalar. Such black holes, whose metric can be determined fully analytically, generalize the Bañados-Teiteilboim-Zanelli black hole (BTZ) solution in various ways, including singularity-free black holes without any fine-tuning of couplings or parameters. In this paper we extend the family of EQT theories to general curvature orders. We show that, beyond linear order, ⁡() satisfies a second-order differential equation rather than an algebraic one, making the corresponding theories belong to the electromagnetic generalized quasitopological (EGQT) class. We prove that at each curvature order, the most general EGQT density is given by a single term which contributes nontrivially to the equation of ⁡() plus densities which do not contribute at all to such equation. The proof relies on the counting of the exact number of independent order- densities of the form ℒ⁡(⁢,∂), which we carry out. We study some general aspects of the new families of EGQT black-hole solutions, including their thermodynamic properties and the fulfillment of the first law, and explicitly construct a few of them numerically.
Fil: Bueno, Pablo. Universidad de Barcelona. Facultad de Física; España
Fil: Cano, Pablo A.. Katholikie Universiteit Leuven; Bélgica
Fil: Moreno, Javier. University of Haifa; Israel
Fil: Van Der Velde, Guido Gustavo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Generalized Quasitopological Gravities
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/241732

id CONICETDig_a3cf245f29e3b6317a45d4b73cc43657
oai_identifier_str oai:ri.conicet.gov.ar:11336/241732
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensionsBueno, PabloCano, Pablo A.Moreno, JavierVan Der Velde, Guido GustavoGeneralized Quasitopological Gravitieshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The construction of quasitopological gravities in three-dimensions requires coupling a scalar field to the metric. As shown in [arXiv:2104.10172], the resulting “electromagnetic” quasitopological (EQT) theories admit charged black hole solutions characterized by a single-function for the metric, −⁢=−1 ⁢≡⁡(), and a simple azimuthal form for the scalar. Such black holes, whose metric can be determined fully analytically, generalize the Bañados-Teiteilboim-Zanelli black hole (BTZ) solution in various ways, including singularity-free black holes without any fine-tuning of couplings or parameters. In this paper we extend the family of EQT theories to general curvature orders. We show that, beyond linear order, ⁡() satisfies a second-order differential equation rather than an algebraic one, making the corresponding theories belong to the electromagnetic generalized quasitopological (EGQT) class. We prove that at each curvature order, the most general EGQT density is given by a single term which contributes nontrivially to the equation of ⁡() plus densities which do not contribute at all to such equation. The proof relies on the counting of the exact number of independent order- densities of the form ℒ⁡(⁢,∂), which we carry out. We study some general aspects of the new families of EGQT black-hole solutions, including their thermodynamic properties and the fulfillment of the first law, and explicitly construct a few of them numerically.Fil: Bueno, Pablo. Universidad de Barcelona. Facultad de Física; EspañaFil: Cano, Pablo A.. Katholikie Universiteit Leuven; BélgicaFil: Moreno, Javier. University of Haifa; IsraelFil: Van Der Velde, Guido Gustavo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241732Bueno, Pablo; Cano, Pablo A.; Moreno, Javier; Van Der Velde, Guido Gustavo; Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 107; 6; 3-2023; 1-302470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.107.064050info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.107.064050info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:29:17Zoai:ri.conicet.gov.ar:11336/241732instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:29:18.167CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions
title Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions
spellingShingle Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions
Bueno, Pablo
Generalized Quasitopological Gravities
title_short Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions
title_full Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions
title_fullStr Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions
title_full_unstemmed Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions
title_sort Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions
dc.creator.none.fl_str_mv Bueno, Pablo
Cano, Pablo A.
Moreno, Javier
Van Der Velde, Guido Gustavo
author Bueno, Pablo
author_facet Bueno, Pablo
Cano, Pablo A.
Moreno, Javier
Van Der Velde, Guido Gustavo
author_role author
author2 Cano, Pablo A.
Moreno, Javier
Van Der Velde, Guido Gustavo
author2_role author
author
author
dc.subject.none.fl_str_mv Generalized Quasitopological Gravities
topic Generalized Quasitopological Gravities
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The construction of quasitopological gravities in three-dimensions requires coupling a scalar field to the metric. As shown in [arXiv:2104.10172], the resulting “electromagnetic” quasitopological (EQT) theories admit charged black hole solutions characterized by a single-function for the metric, −⁢=−1 ⁢≡⁡(), and a simple azimuthal form for the scalar. Such black holes, whose metric can be determined fully analytically, generalize the Bañados-Teiteilboim-Zanelli black hole (BTZ) solution in various ways, including singularity-free black holes without any fine-tuning of couplings or parameters. In this paper we extend the family of EQT theories to general curvature orders. We show that, beyond linear order, ⁡() satisfies a second-order differential equation rather than an algebraic one, making the corresponding theories belong to the electromagnetic generalized quasitopological (EGQT) class. We prove that at each curvature order, the most general EGQT density is given by a single term which contributes nontrivially to the equation of ⁡() plus densities which do not contribute at all to such equation. The proof relies on the counting of the exact number of independent order- densities of the form ℒ⁡(⁢,∂), which we carry out. We study some general aspects of the new families of EGQT black-hole solutions, including their thermodynamic properties and the fulfillment of the first law, and explicitly construct a few of them numerically.
Fil: Bueno, Pablo. Universidad de Barcelona. Facultad de Física; España
Fil: Cano, Pablo A.. Katholikie Universiteit Leuven; Bélgica
Fil: Moreno, Javier. University of Haifa; Israel
Fil: Van Der Velde, Guido Gustavo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The construction of quasitopological gravities in three-dimensions requires coupling a scalar field to the metric. As shown in [arXiv:2104.10172], the resulting “electromagnetic” quasitopological (EQT) theories admit charged black hole solutions characterized by a single-function for the metric, −⁢=−1 ⁢≡⁡(), and a simple azimuthal form for the scalar. Such black holes, whose metric can be determined fully analytically, generalize the Bañados-Teiteilboim-Zanelli black hole (BTZ) solution in various ways, including singularity-free black holes without any fine-tuning of couplings or parameters. In this paper we extend the family of EQT theories to general curvature orders. We show that, beyond linear order, ⁡() satisfies a second-order differential equation rather than an algebraic one, making the corresponding theories belong to the electromagnetic generalized quasitopological (EGQT) class. We prove that at each curvature order, the most general EGQT density is given by a single term which contributes nontrivially to the equation of ⁡() plus densities which do not contribute at all to such equation. The proof relies on the counting of the exact number of independent order- densities of the form ℒ⁡(⁢,∂), which we carry out. We study some general aspects of the new families of EGQT black-hole solutions, including their thermodynamic properties and the fulfillment of the first law, and explicitly construct a few of them numerically.
publishDate 2023
dc.date.none.fl_str_mv 2023-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/241732
Bueno, Pablo; Cano, Pablo A.; Moreno, Javier; Van Der Velde, Guido Gustavo; Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 107; 6; 3-2023; 1-30
2470-0010
2470-0029
CONICET Digital
CONICET
url http://hdl.handle.net/11336/241732
identifier_str_mv Bueno, Pablo; Cano, Pablo A.; Moreno, Javier; Van Der Velde, Guido Gustavo; Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 107; 6; 3-2023; 1-30
2470-0010
2470-0029
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.107.064050
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.107.064050
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083432685240320
score 13.22299