Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions
- Autores
- Bueno, Pablo; Cano, Pablo A.; Moreno, Javier; Van Der Velde, Guido Gustavo
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The construction of quasitopological gravities in three-dimensions requires coupling a scalar field to the metric. As shown in [arXiv:2104.10172], the resulting “electromagnetic” quasitopological (EQT) theories admit charged black hole solutions characterized by a single-function for the metric, −=−1 ≡(), and a simple azimuthal form for the scalar. Such black holes, whose metric can be determined fully analytically, generalize the Bañados-Teiteilboim-Zanelli black hole (BTZ) solution in various ways, including singularity-free black holes without any fine-tuning of couplings or parameters. In this paper we extend the family of EQT theories to general curvature orders. We show that, beyond linear order, () satisfies a second-order differential equation rather than an algebraic one, making the corresponding theories belong to the electromagnetic generalized quasitopological (EGQT) class. We prove that at each curvature order, the most general EGQT density is given by a single term which contributes nontrivially to the equation of () plus densities which do not contribute at all to such equation. The proof relies on the counting of the exact number of independent order- densities of the form ℒ(,∂), which we carry out. We study some general aspects of the new families of EGQT black-hole solutions, including their thermodynamic properties and the fulfillment of the first law, and explicitly construct a few of them numerically.
Fil: Bueno, Pablo. Universidad de Barcelona. Facultad de Física; España
Fil: Cano, Pablo A.. Katholikie Universiteit Leuven; Bélgica
Fil: Moreno, Javier. University of Haifa; Israel
Fil: Van Der Velde, Guido Gustavo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
- Generalized Quasitopological Gravities
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/241732
Ver los metadatos del registro completo
| id |
CONICETDig_a3cf245f29e3b6317a45d4b73cc43657 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/241732 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensionsBueno, PabloCano, Pablo A.Moreno, JavierVan Der Velde, Guido GustavoGeneralized Quasitopological Gravitieshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The construction of quasitopological gravities in three-dimensions requires coupling a scalar field to the metric. As shown in [arXiv:2104.10172], the resulting “electromagnetic” quasitopological (EQT) theories admit charged black hole solutions characterized by a single-function for the metric, −=−1 ≡(), and a simple azimuthal form for the scalar. Such black holes, whose metric can be determined fully analytically, generalize the Bañados-Teiteilboim-Zanelli black hole (BTZ) solution in various ways, including singularity-free black holes without any fine-tuning of couplings or parameters. In this paper we extend the family of EQT theories to general curvature orders. We show that, beyond linear order, () satisfies a second-order differential equation rather than an algebraic one, making the corresponding theories belong to the electromagnetic generalized quasitopological (EGQT) class. We prove that at each curvature order, the most general EGQT density is given by a single term which contributes nontrivially to the equation of () plus densities which do not contribute at all to such equation. The proof relies on the counting of the exact number of independent order- densities of the form ℒ(,∂), which we carry out. We study some general aspects of the new families of EGQT black-hole solutions, including their thermodynamic properties and the fulfillment of the first law, and explicitly construct a few of them numerically.Fil: Bueno, Pablo. Universidad de Barcelona. Facultad de Física; EspañaFil: Cano, Pablo A.. Katholikie Universiteit Leuven; BélgicaFil: Moreno, Javier. University of Haifa; IsraelFil: Van Der Velde, Guido Gustavo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241732Bueno, Pablo; Cano, Pablo A.; Moreno, Javier; Van Der Velde, Guido Gustavo; Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 107; 6; 3-2023; 1-302470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.107.064050info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.107.064050info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:29:17Zoai:ri.conicet.gov.ar:11336/241732instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:29:18.167CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions |
| title |
Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions |
| spellingShingle |
Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions Bueno, Pablo Generalized Quasitopological Gravities |
| title_short |
Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions |
| title_full |
Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions |
| title_fullStr |
Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions |
| title_full_unstemmed |
Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions |
| title_sort |
Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions |
| dc.creator.none.fl_str_mv |
Bueno, Pablo Cano, Pablo A. Moreno, Javier Van Der Velde, Guido Gustavo |
| author |
Bueno, Pablo |
| author_facet |
Bueno, Pablo Cano, Pablo A. Moreno, Javier Van Der Velde, Guido Gustavo |
| author_role |
author |
| author2 |
Cano, Pablo A. Moreno, Javier Van Der Velde, Guido Gustavo |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Generalized Quasitopological Gravities |
| topic |
Generalized Quasitopological Gravities |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The construction of quasitopological gravities in three-dimensions requires coupling a scalar field to the metric. As shown in [arXiv:2104.10172], the resulting “electromagnetic” quasitopological (EQT) theories admit charged black hole solutions characterized by a single-function for the metric, −=−1 ≡(), and a simple azimuthal form for the scalar. Such black holes, whose metric can be determined fully analytically, generalize the Bañados-Teiteilboim-Zanelli black hole (BTZ) solution in various ways, including singularity-free black holes without any fine-tuning of couplings or parameters. In this paper we extend the family of EQT theories to general curvature orders. We show that, beyond linear order, () satisfies a second-order differential equation rather than an algebraic one, making the corresponding theories belong to the electromagnetic generalized quasitopological (EGQT) class. We prove that at each curvature order, the most general EGQT density is given by a single term which contributes nontrivially to the equation of () plus densities which do not contribute at all to such equation. The proof relies on the counting of the exact number of independent order- densities of the form ℒ(,∂), which we carry out. We study some general aspects of the new families of EGQT black-hole solutions, including their thermodynamic properties and the fulfillment of the first law, and explicitly construct a few of them numerically. Fil: Bueno, Pablo. Universidad de Barcelona. Facultad de Física; España Fil: Cano, Pablo A.. Katholikie Universiteit Leuven; Bélgica Fil: Moreno, Javier. University of Haifa; Israel Fil: Van Der Velde, Guido Gustavo. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
The construction of quasitopological gravities in three-dimensions requires coupling a scalar field to the metric. As shown in [arXiv:2104.10172], the resulting “electromagnetic” quasitopological (EQT) theories admit charged black hole solutions characterized by a single-function for the metric, −=−1 ≡(), and a simple azimuthal form for the scalar. Such black holes, whose metric can be determined fully analytically, generalize the Bañados-Teiteilboim-Zanelli black hole (BTZ) solution in various ways, including singularity-free black holes without any fine-tuning of couplings or parameters. In this paper we extend the family of EQT theories to general curvature orders. We show that, beyond linear order, () satisfies a second-order differential equation rather than an algebraic one, making the corresponding theories belong to the electromagnetic generalized quasitopological (EGQT) class. We prove that at each curvature order, the most general EGQT density is given by a single term which contributes nontrivially to the equation of () plus densities which do not contribute at all to such equation. The proof relies on the counting of the exact number of independent order- densities of the form ℒ(,∂), which we carry out. We study some general aspects of the new families of EGQT black-hole solutions, including their thermodynamic properties and the fulfillment of the first law, and explicitly construct a few of them numerically. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/241732 Bueno, Pablo; Cano, Pablo A.; Moreno, Javier; Van Der Velde, Guido Gustavo; Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 107; 6; 3-2023; 1-30 2470-0010 2470-0029 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/241732 |
| identifier_str_mv |
Bueno, Pablo; Cano, Pablo A.; Moreno, Javier; Van Der Velde, Guido Gustavo; Electromagnetic generalized quasitopological gravities in ( 2 + 1 ) dimensions; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 107; 6; 3-2023; 1-30 2470-0010 2470-0029 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.107.064050 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.107.064050 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Physical Society |
| publisher.none.fl_str_mv |
American Physical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846083432685240320 |
| score |
13.22299 |