Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-cas9 ribonucleoproteins

Autores
Medeiros, Lia Carolina Soares; South, Lilith; Peng, Duo; Bustamante, Juan Manuel; Wang, Wei; Bunkofske, Molly; Perumal, Natasha; Sánchez Valdéz, Fernando Javier; Tarleton, Rick L.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Trypanosomatids (order Kinetoplastida), including the human pathogens Trypanosoma cruzi (agent of Chagas disease), Trypanosoma brucei, (African sleeping sickness), and Leishmania (leishmaniasis), affect millions of people and animals globally. T. cruzi is considered one of the least studied and most poorly understood tropical disease-causing parasites, in part because of the relative lack of facile genetic engineering tools. This situation has improved recently through the application of clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) technology, but a number of limitations remain, including the toxicity of continuous Cas9 expression and the long drug marker selection times. In this study, we show that the delivery of ribonucleoprotein (RNP) complexes composed of recombinant Cas9 fromStaphylococcus aureus (SaCas9), but not from the more routinely usedStreptococcus pyogenes Cas9 (SpCas9), and in vitro-transcribed single guide RNAs (sgRNAs) results in rapid gene edits in T. cruzi and other kinetoplastids at frequencies approaching 100%. The highly efficient genome editing via SaCas9/sgRNA RNPs was obtained for both reporter and endogenous genes and observed in multiple parasite life cycle stages in various strains of T. cruzi, as well as in T. brucei and Leishmania major. RNP complex delivery was also used to successfully tag proteins at endogenous loci and to assess the biological functions of essential genes. Thus, the use of SaCas9 RNP complexes for gene editing in kinetoplastids provides a simple, rapid, and cloningand selection-free method to assess gene function in these important human pathogens. IMPORTANCE Protozoan parasites remain some of the highest-impact human and animal pathogens, with very limited treatment and prevention options. The development of improved therapeutics and vaccines depends on a better understanding of the unique biology of these organisms, and understanding their biology, in turn, requires the ability to track and manipulate the products of genes. In this work, we describe new methods that are available to essentially any laboratory and applicable to any parasite isolate for easily and rapidly editing the genomes of kinetoplastid parasites. We demonstrate that these methods provide the means to quickly assess function, including that of the products of essential genes and potential targets of drugs, and to tag gene products at their endogenous loci. This is all achieved without gene cloning or drug selection. We expect this advance to enable investigations, especially in Trypanosoma cruzi andLeishmania spp., that have eluded investigators for decades.
Fil: Medeiros, Lia Carolina Soares. University of Georgia; Estados Unidos. Fundación Oswaldo Cruz; Brasil
Fil: South, Lilith. University of Georgia; Estados Unidos
Fil: Peng, Duo. University of Georgia; Estados Unidos
Fil: Bustamante, Juan Manuel. University of Georgia; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wang, Wei. University of Georgia; Estados Unidos
Fil: Bunkofske, Molly. University of Georgia; Estados Unidos
Fil: Perumal, Natasha. University of Georgia; Estados Unidos
Fil: Sánchez Valdéz, Fernando Javier. University of Georgia; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Patología Experimental. Universidad Nacional de Salta. Facultad de Ciencias de la Salud. Instituto de Patología Experimental; Argentina
Fil: Tarleton, Rick L.. University of Georgia; Estados Unidos
Materia
Cas9
Crispr
Genome Editing
Leishmania
Ribonucleoproteins
Sacas9
Trypanosoma
Trypanosoma Brucei
Trypanosoma Cruzi
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/50979

id CONICETDig_a35bcd4afcee9aeead7f64b369d57d97
oai_identifier_str oai:ri.conicet.gov.ar:11336/50979
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-cas9 ribonucleoproteinsMedeiros, Lia Carolina SoaresSouth, LilithPeng, DuoBustamante, Juan ManuelWang, WeiBunkofske, MollyPerumal, NatashaSánchez Valdéz, Fernando JavierTarleton, Rick L.Cas9CrisprGenome EditingLeishmaniaRibonucleoproteinsSacas9TrypanosomaTrypanosoma BruceiTrypanosoma Cruzihttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Trypanosomatids (order Kinetoplastida), including the human pathogens Trypanosoma cruzi (agent of Chagas disease), Trypanosoma brucei, (African sleeping sickness), and Leishmania (leishmaniasis), affect millions of people and animals globally. T. cruzi is considered one of the least studied and most poorly understood tropical disease-causing parasites, in part because of the relative lack of facile genetic engineering tools. This situation has improved recently through the application of clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) technology, but a number of limitations remain, including the toxicity of continuous Cas9 expression and the long drug marker selection times. In this study, we show that the delivery of ribonucleoprotein (RNP) complexes composed of recombinant Cas9 fromStaphylococcus aureus (SaCas9), but not from the more routinely usedStreptococcus pyogenes Cas9 (SpCas9), and in vitro-transcribed single guide RNAs (sgRNAs) results in rapid gene edits in T. cruzi and other kinetoplastids at frequencies approaching 100%. The highly efficient genome editing via SaCas9/sgRNA RNPs was obtained for both reporter and endogenous genes and observed in multiple parasite life cycle stages in various strains of T. cruzi, as well as in T. brucei and Leishmania major. RNP complex delivery was also used to successfully tag proteins at endogenous loci and to assess the biological functions of essential genes. Thus, the use of SaCas9 RNP complexes for gene editing in kinetoplastids provides a simple, rapid, and cloningand selection-free method to assess gene function in these important human pathogens. IMPORTANCE Protozoan parasites remain some of the highest-impact human and animal pathogens, with very limited treatment and prevention options. The development of improved therapeutics and vaccines depends on a better understanding of the unique biology of these organisms, and understanding their biology, in turn, requires the ability to track and manipulate the products of genes. In this work, we describe new methods that are available to essentially any laboratory and applicable to any parasite isolate for easily and rapidly editing the genomes of kinetoplastid parasites. We demonstrate that these methods provide the means to quickly assess function, including that of the products of essential genes and potential targets of drugs, and to tag gene products at their endogenous loci. This is all achieved without gene cloning or drug selection. We expect this advance to enable investigations, especially in Trypanosoma cruzi andLeishmania spp., that have eluded investigators for decades.Fil: Medeiros, Lia Carolina Soares. University of Georgia; Estados Unidos. Fundación Oswaldo Cruz; BrasilFil: South, Lilith. University of Georgia; Estados UnidosFil: Peng, Duo. University of Georgia; Estados UnidosFil: Bustamante, Juan Manuel. University of Georgia; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wang, Wei. University of Georgia; Estados UnidosFil: Bunkofske, Molly. University of Georgia; Estados UnidosFil: Perumal, Natasha. University of Georgia; Estados UnidosFil: Sánchez Valdéz, Fernando Javier. University of Georgia; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Patología Experimental. Universidad Nacional de Salta. Facultad de Ciencias de la Salud. Instituto de Patología Experimental; ArgentinaFil: Tarleton, Rick L.. University of Georgia; Estados UnidosAmerican Society for Microbiology2017-11-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50979Medeiros, Lia Carolina Soares; South, Lilith; Peng, Duo; Bustamante, Juan Manuel; Wang, Wei; et al.; Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-cas9 ribonucleoproteins; American Society for Microbiology; mBio; 8; 6; 7-11-2017; e01788-172161-21292150-7511CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1128/mBio.01788-17info:eu-repo/semantics/altIdentifier/url/http://mbio.asm.org/content/8/6/e01788-17info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470643/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:05Zoai:ri.conicet.gov.ar:11336/50979instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:05.775CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-cas9 ribonucleoproteins
title Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-cas9 ribonucleoproteins
spellingShingle Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-cas9 ribonucleoproteins
Medeiros, Lia Carolina Soares
Cas9
Crispr
Genome Editing
Leishmania
Ribonucleoproteins
Sacas9
Trypanosoma
Trypanosoma Brucei
Trypanosoma Cruzi
title_short Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-cas9 ribonucleoproteins
title_full Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-cas9 ribonucleoproteins
title_fullStr Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-cas9 ribonucleoproteins
title_full_unstemmed Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-cas9 ribonucleoproteins
title_sort Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-cas9 ribonucleoproteins
dc.creator.none.fl_str_mv Medeiros, Lia Carolina Soares
South, Lilith
Peng, Duo
Bustamante, Juan Manuel
Wang, Wei
Bunkofske, Molly
Perumal, Natasha
Sánchez Valdéz, Fernando Javier
Tarleton, Rick L.
author Medeiros, Lia Carolina Soares
author_facet Medeiros, Lia Carolina Soares
South, Lilith
Peng, Duo
Bustamante, Juan Manuel
Wang, Wei
Bunkofske, Molly
Perumal, Natasha
Sánchez Valdéz, Fernando Javier
Tarleton, Rick L.
author_role author
author2 South, Lilith
Peng, Duo
Bustamante, Juan Manuel
Wang, Wei
Bunkofske, Molly
Perumal, Natasha
Sánchez Valdéz, Fernando Javier
Tarleton, Rick L.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Cas9
Crispr
Genome Editing
Leishmania
Ribonucleoproteins
Sacas9
Trypanosoma
Trypanosoma Brucei
Trypanosoma Cruzi
topic Cas9
Crispr
Genome Editing
Leishmania
Ribonucleoproteins
Sacas9
Trypanosoma
Trypanosoma Brucei
Trypanosoma Cruzi
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Trypanosomatids (order Kinetoplastida), including the human pathogens Trypanosoma cruzi (agent of Chagas disease), Trypanosoma brucei, (African sleeping sickness), and Leishmania (leishmaniasis), affect millions of people and animals globally. T. cruzi is considered one of the least studied and most poorly understood tropical disease-causing parasites, in part because of the relative lack of facile genetic engineering tools. This situation has improved recently through the application of clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) technology, but a number of limitations remain, including the toxicity of continuous Cas9 expression and the long drug marker selection times. In this study, we show that the delivery of ribonucleoprotein (RNP) complexes composed of recombinant Cas9 fromStaphylococcus aureus (SaCas9), but not from the more routinely usedStreptococcus pyogenes Cas9 (SpCas9), and in vitro-transcribed single guide RNAs (sgRNAs) results in rapid gene edits in T. cruzi and other kinetoplastids at frequencies approaching 100%. The highly efficient genome editing via SaCas9/sgRNA RNPs was obtained for both reporter and endogenous genes and observed in multiple parasite life cycle stages in various strains of T. cruzi, as well as in T. brucei and Leishmania major. RNP complex delivery was also used to successfully tag proteins at endogenous loci and to assess the biological functions of essential genes. Thus, the use of SaCas9 RNP complexes for gene editing in kinetoplastids provides a simple, rapid, and cloningand selection-free method to assess gene function in these important human pathogens. IMPORTANCE Protozoan parasites remain some of the highest-impact human and animal pathogens, with very limited treatment and prevention options. The development of improved therapeutics and vaccines depends on a better understanding of the unique biology of these organisms, and understanding their biology, in turn, requires the ability to track and manipulate the products of genes. In this work, we describe new methods that are available to essentially any laboratory and applicable to any parasite isolate for easily and rapidly editing the genomes of kinetoplastid parasites. We demonstrate that these methods provide the means to quickly assess function, including that of the products of essential genes and potential targets of drugs, and to tag gene products at their endogenous loci. This is all achieved without gene cloning or drug selection. We expect this advance to enable investigations, especially in Trypanosoma cruzi andLeishmania spp., that have eluded investigators for decades.
Fil: Medeiros, Lia Carolina Soares. University of Georgia; Estados Unidos. Fundación Oswaldo Cruz; Brasil
Fil: South, Lilith. University of Georgia; Estados Unidos
Fil: Peng, Duo. University of Georgia; Estados Unidos
Fil: Bustamante, Juan Manuel. University of Georgia; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wang, Wei. University of Georgia; Estados Unidos
Fil: Bunkofske, Molly. University of Georgia; Estados Unidos
Fil: Perumal, Natasha. University of Georgia; Estados Unidos
Fil: Sánchez Valdéz, Fernando Javier. University of Georgia; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Patología Experimental. Universidad Nacional de Salta. Facultad de Ciencias de la Salud. Instituto de Patología Experimental; Argentina
Fil: Tarleton, Rick L.. University of Georgia; Estados Unidos
description Trypanosomatids (order Kinetoplastida), including the human pathogens Trypanosoma cruzi (agent of Chagas disease), Trypanosoma brucei, (African sleeping sickness), and Leishmania (leishmaniasis), affect millions of people and animals globally. T. cruzi is considered one of the least studied and most poorly understood tropical disease-causing parasites, in part because of the relative lack of facile genetic engineering tools. This situation has improved recently through the application of clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) technology, but a number of limitations remain, including the toxicity of continuous Cas9 expression and the long drug marker selection times. In this study, we show that the delivery of ribonucleoprotein (RNP) complexes composed of recombinant Cas9 fromStaphylococcus aureus (SaCas9), but not from the more routinely usedStreptococcus pyogenes Cas9 (SpCas9), and in vitro-transcribed single guide RNAs (sgRNAs) results in rapid gene edits in T. cruzi and other kinetoplastids at frequencies approaching 100%. The highly efficient genome editing via SaCas9/sgRNA RNPs was obtained for both reporter and endogenous genes and observed in multiple parasite life cycle stages in various strains of T. cruzi, as well as in T. brucei and Leishmania major. RNP complex delivery was also used to successfully tag proteins at endogenous loci and to assess the biological functions of essential genes. Thus, the use of SaCas9 RNP complexes for gene editing in kinetoplastids provides a simple, rapid, and cloningand selection-free method to assess gene function in these important human pathogens. IMPORTANCE Protozoan parasites remain some of the highest-impact human and animal pathogens, with very limited treatment and prevention options. The development of improved therapeutics and vaccines depends on a better understanding of the unique biology of these organisms, and understanding their biology, in turn, requires the ability to track and manipulate the products of genes. In this work, we describe new methods that are available to essentially any laboratory and applicable to any parasite isolate for easily and rapidly editing the genomes of kinetoplastid parasites. We demonstrate that these methods provide the means to quickly assess function, including that of the products of essential genes and potential targets of drugs, and to tag gene products at their endogenous loci. This is all achieved without gene cloning or drug selection. We expect this advance to enable investigations, especially in Trypanosoma cruzi andLeishmania spp., that have eluded investigators for decades.
publishDate 2017
dc.date.none.fl_str_mv 2017-11-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/50979
Medeiros, Lia Carolina Soares; South, Lilith; Peng, Duo; Bustamante, Juan Manuel; Wang, Wei; et al.; Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-cas9 ribonucleoproteins; American Society for Microbiology; mBio; 8; 6; 7-11-2017; e01788-17
2161-2129
2150-7511
CONICET Digital
CONICET
url http://hdl.handle.net/11336/50979
identifier_str_mv Medeiros, Lia Carolina Soares; South, Lilith; Peng, Duo; Bustamante, Juan Manuel; Wang, Wei; et al.; Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-cas9 ribonucleoproteins; American Society for Microbiology; mBio; 8; 6; 7-11-2017; e01788-17
2161-2129
2150-7511
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1128/mBio.01788-17
info:eu-repo/semantics/altIdentifier/url/http://mbio.asm.org/content/8/6/e01788-17
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470643/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Society for Microbiology
publisher.none.fl_str_mv American Society for Microbiology
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269891618406400
score 13.13397