Dynamic optimization of the mashing process
- Autores
- Durand, Guillermo Andrés; Corazza, M. L.; Blanco, Anibal Manuel; Corazza, F. C.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work aims to demonstrate the applicability of dynamic optimization to improve the time-temperature schedule of a brewery mashing process, based on kinetic models available in the literature. The mashing process consists in the enzymatic degradation of the polysaccharides present in the malt. This is a fundamental step within the brewery activity since the composition of the mashing wort determines the quality of the final product. The main reactions that take place in the mashing are the degradation of starch, β-glucans and arabinoxylans into small chain fermentable and non-fermentable carbohydrates. The manipulation of the temperature profile of the batch reactor is the main mechanism to control the extent of the ongoing reactions. Since high temperatures favor the production of fermentable matter but also increases the concentration of undesirable species in the wort, the choice of an adequate temperature profile is not obvious. Dynamic optimization studies with a complete mashing model demonstrate that profiles of "temperature averages" of about 51 °C are preferred over typical industrial mashings of 64 °C to optimize the operation. © 2009 Elsevier Ltd. All rights reserved.
Fil: Durand, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Corazza, M. L.. Universidad Regional Integrada; Brasil
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Corazza, F. C.. Universidad Regional Integrada; Brasil - Materia
-
Dynamic Optimization
Mashing Process
Model - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/57779
Ver los metadatos del registro completo
id |
CONICETDig_a32cd3f61e8c27c87075f67f0d8eae61 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/57779 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dynamic optimization of the mashing processDurand, Guillermo AndrésCorazza, M. L.Blanco, Anibal ManuelCorazza, F. C.Dynamic OptimizationMashing ProcessModelhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This work aims to demonstrate the applicability of dynamic optimization to improve the time-temperature schedule of a brewery mashing process, based on kinetic models available in the literature. The mashing process consists in the enzymatic degradation of the polysaccharides present in the malt. This is a fundamental step within the brewery activity since the composition of the mashing wort determines the quality of the final product. The main reactions that take place in the mashing are the degradation of starch, β-glucans and arabinoxylans into small chain fermentable and non-fermentable carbohydrates. The manipulation of the temperature profile of the batch reactor is the main mechanism to control the extent of the ongoing reactions. Since high temperatures favor the production of fermentable matter but also increases the concentration of undesirable species in the wort, the choice of an adequate temperature profile is not obvious. Dynamic optimization studies with a complete mashing model demonstrate that profiles of "temperature averages" of about 51 °C are preferred over typical industrial mashings of 64 °C to optimize the operation. © 2009 Elsevier Ltd. All rights reserved.Fil: Durand, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Corazza, M. L.. Universidad Regional Integrada; BrasilFil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Corazza, F. C.. Universidad Regional Integrada; BrasilElsevier2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57779Durand, Guillermo Andrés; Corazza, M. L.; Blanco, Anibal Manuel; Corazza, F. C.; Dynamic optimization of the mashing process; Elsevier; Food Control; 20; 12; 12-2009; 1127-11400956-7135CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodcont.2009.03.004info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0956713509000784info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:09:35Zoai:ri.conicet.gov.ar:11336/57779instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:09:35.649CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dynamic optimization of the mashing process |
title |
Dynamic optimization of the mashing process |
spellingShingle |
Dynamic optimization of the mashing process Durand, Guillermo Andrés Dynamic Optimization Mashing Process Model |
title_short |
Dynamic optimization of the mashing process |
title_full |
Dynamic optimization of the mashing process |
title_fullStr |
Dynamic optimization of the mashing process |
title_full_unstemmed |
Dynamic optimization of the mashing process |
title_sort |
Dynamic optimization of the mashing process |
dc.creator.none.fl_str_mv |
Durand, Guillermo Andrés Corazza, M. L. Blanco, Anibal Manuel Corazza, F. C. |
author |
Durand, Guillermo Andrés |
author_facet |
Durand, Guillermo Andrés Corazza, M. L. Blanco, Anibal Manuel Corazza, F. C. |
author_role |
author |
author2 |
Corazza, M. L. Blanco, Anibal Manuel Corazza, F. C. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Dynamic Optimization Mashing Process Model |
topic |
Dynamic Optimization Mashing Process Model |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This work aims to demonstrate the applicability of dynamic optimization to improve the time-temperature schedule of a brewery mashing process, based on kinetic models available in the literature. The mashing process consists in the enzymatic degradation of the polysaccharides present in the malt. This is a fundamental step within the brewery activity since the composition of the mashing wort determines the quality of the final product. The main reactions that take place in the mashing are the degradation of starch, β-glucans and arabinoxylans into small chain fermentable and non-fermentable carbohydrates. The manipulation of the temperature profile of the batch reactor is the main mechanism to control the extent of the ongoing reactions. Since high temperatures favor the production of fermentable matter but also increases the concentration of undesirable species in the wort, the choice of an adequate temperature profile is not obvious. Dynamic optimization studies with a complete mashing model demonstrate that profiles of "temperature averages" of about 51 °C are preferred over typical industrial mashings of 64 °C to optimize the operation. © 2009 Elsevier Ltd. All rights reserved. Fil: Durand, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Corazza, M. L.. Universidad Regional Integrada; Brasil Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Corazza, F. C.. Universidad Regional Integrada; Brasil |
description |
This work aims to demonstrate the applicability of dynamic optimization to improve the time-temperature schedule of a brewery mashing process, based on kinetic models available in the literature. The mashing process consists in the enzymatic degradation of the polysaccharides present in the malt. This is a fundamental step within the brewery activity since the composition of the mashing wort determines the quality of the final product. The main reactions that take place in the mashing are the degradation of starch, β-glucans and arabinoxylans into small chain fermentable and non-fermentable carbohydrates. The manipulation of the temperature profile of the batch reactor is the main mechanism to control the extent of the ongoing reactions. Since high temperatures favor the production of fermentable matter but also increases the concentration of undesirable species in the wort, the choice of an adequate temperature profile is not obvious. Dynamic optimization studies with a complete mashing model demonstrate that profiles of "temperature averages" of about 51 °C are preferred over typical industrial mashings of 64 °C to optimize the operation. © 2009 Elsevier Ltd. All rights reserved. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/57779 Durand, Guillermo Andrés; Corazza, M. L.; Blanco, Anibal Manuel; Corazza, F. C.; Dynamic optimization of the mashing process; Elsevier; Food Control; 20; 12; 12-2009; 1127-1140 0956-7135 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/57779 |
identifier_str_mv |
Durand, Guillermo Andrés; Corazza, M. L.; Blanco, Anibal Manuel; Corazza, F. C.; Dynamic optimization of the mashing process; Elsevier; Food Control; 20; 12; 12-2009; 1127-1140 0956-7135 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodcont.2009.03.004 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0956713509000784 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980472494227456 |
score |
12.993085 |