Dynamic optimization of the mashing process

Autores
Durand, Guillermo Andrés; Corazza, M. L.; Blanco, Anibal Manuel; Corazza, F. C.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work aims to demonstrate the applicability of dynamic optimization to improve the time-temperature schedule of a brewery mashing process, based on kinetic models available in the literature. The mashing process consists in the enzymatic degradation of the polysaccharides present in the malt. This is a fundamental step within the brewery activity since the composition of the mashing wort determines the quality of the final product. The main reactions that take place in the mashing are the degradation of starch, β-glucans and arabinoxylans into small chain fermentable and non-fermentable carbohydrates. The manipulation of the temperature profile of the batch reactor is the main mechanism to control the extent of the ongoing reactions. Since high temperatures favor the production of fermentable matter but also increases the concentration of undesirable species in the wort, the choice of an adequate temperature profile is not obvious. Dynamic optimization studies with a complete mashing model demonstrate that profiles of "temperature averages" of about 51 °C are preferred over typical industrial mashings of 64 °C to optimize the operation. © 2009 Elsevier Ltd. All rights reserved.
Fil: Durand, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Corazza, M. L.. Universidad Regional Integrada; Brasil
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Corazza, F. C.. Universidad Regional Integrada; Brasil
Materia
Dynamic Optimization
Mashing Process
Model
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/57779

id CONICETDig_a32cd3f61e8c27c87075f67f0d8eae61
oai_identifier_str oai:ri.conicet.gov.ar:11336/57779
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dynamic optimization of the mashing processDurand, Guillermo AndrésCorazza, M. L.Blanco, Anibal ManuelCorazza, F. C.Dynamic OptimizationMashing ProcessModelhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This work aims to demonstrate the applicability of dynamic optimization to improve the time-temperature schedule of a brewery mashing process, based on kinetic models available in the literature. The mashing process consists in the enzymatic degradation of the polysaccharides present in the malt. This is a fundamental step within the brewery activity since the composition of the mashing wort determines the quality of the final product. The main reactions that take place in the mashing are the degradation of starch, β-glucans and arabinoxylans into small chain fermentable and non-fermentable carbohydrates. The manipulation of the temperature profile of the batch reactor is the main mechanism to control the extent of the ongoing reactions. Since high temperatures favor the production of fermentable matter but also increases the concentration of undesirable species in the wort, the choice of an adequate temperature profile is not obvious. Dynamic optimization studies with a complete mashing model demonstrate that profiles of "temperature averages" of about 51 °C are preferred over typical industrial mashings of 64 °C to optimize the operation. © 2009 Elsevier Ltd. All rights reserved.Fil: Durand, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Corazza, M. L.. Universidad Regional Integrada; BrasilFil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Corazza, F. C.. Universidad Regional Integrada; BrasilElsevier2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57779Durand, Guillermo Andrés; Corazza, M. L.; Blanco, Anibal Manuel; Corazza, F. C.; Dynamic optimization of the mashing process; Elsevier; Food Control; 20; 12; 12-2009; 1127-11400956-7135CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodcont.2009.03.004info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0956713509000784info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:09:35Zoai:ri.conicet.gov.ar:11336/57779instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:09:35.649CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dynamic optimization of the mashing process
title Dynamic optimization of the mashing process
spellingShingle Dynamic optimization of the mashing process
Durand, Guillermo Andrés
Dynamic Optimization
Mashing Process
Model
title_short Dynamic optimization of the mashing process
title_full Dynamic optimization of the mashing process
title_fullStr Dynamic optimization of the mashing process
title_full_unstemmed Dynamic optimization of the mashing process
title_sort Dynamic optimization of the mashing process
dc.creator.none.fl_str_mv Durand, Guillermo Andrés
Corazza, M. L.
Blanco, Anibal Manuel
Corazza, F. C.
author Durand, Guillermo Andrés
author_facet Durand, Guillermo Andrés
Corazza, M. L.
Blanco, Anibal Manuel
Corazza, F. C.
author_role author
author2 Corazza, M. L.
Blanco, Anibal Manuel
Corazza, F. C.
author2_role author
author
author
dc.subject.none.fl_str_mv Dynamic Optimization
Mashing Process
Model
topic Dynamic Optimization
Mashing Process
Model
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This work aims to demonstrate the applicability of dynamic optimization to improve the time-temperature schedule of a brewery mashing process, based on kinetic models available in the literature. The mashing process consists in the enzymatic degradation of the polysaccharides present in the malt. This is a fundamental step within the brewery activity since the composition of the mashing wort determines the quality of the final product. The main reactions that take place in the mashing are the degradation of starch, β-glucans and arabinoxylans into small chain fermentable and non-fermentable carbohydrates. The manipulation of the temperature profile of the batch reactor is the main mechanism to control the extent of the ongoing reactions. Since high temperatures favor the production of fermentable matter but also increases the concentration of undesirable species in the wort, the choice of an adequate temperature profile is not obvious. Dynamic optimization studies with a complete mashing model demonstrate that profiles of "temperature averages" of about 51 °C are preferred over typical industrial mashings of 64 °C to optimize the operation. © 2009 Elsevier Ltd. All rights reserved.
Fil: Durand, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Corazza, M. L.. Universidad Regional Integrada; Brasil
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Corazza, F. C.. Universidad Regional Integrada; Brasil
description This work aims to demonstrate the applicability of dynamic optimization to improve the time-temperature schedule of a brewery mashing process, based on kinetic models available in the literature. The mashing process consists in the enzymatic degradation of the polysaccharides present in the malt. This is a fundamental step within the brewery activity since the composition of the mashing wort determines the quality of the final product. The main reactions that take place in the mashing are the degradation of starch, β-glucans and arabinoxylans into small chain fermentable and non-fermentable carbohydrates. The manipulation of the temperature profile of the batch reactor is the main mechanism to control the extent of the ongoing reactions. Since high temperatures favor the production of fermentable matter but also increases the concentration of undesirable species in the wort, the choice of an adequate temperature profile is not obvious. Dynamic optimization studies with a complete mashing model demonstrate that profiles of "temperature averages" of about 51 °C are preferred over typical industrial mashings of 64 °C to optimize the operation. © 2009 Elsevier Ltd. All rights reserved.
publishDate 2009
dc.date.none.fl_str_mv 2009-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/57779
Durand, Guillermo Andrés; Corazza, M. L.; Blanco, Anibal Manuel; Corazza, F. C.; Dynamic optimization of the mashing process; Elsevier; Food Control; 20; 12; 12-2009; 1127-1140
0956-7135
CONICET Digital
CONICET
url http://hdl.handle.net/11336/57779
identifier_str_mv Durand, Guillermo Andrés; Corazza, M. L.; Blanco, Anibal Manuel; Corazza, F. C.; Dynamic optimization of the mashing process; Elsevier; Food Control; 20; 12; 12-2009; 1127-1140
0956-7135
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodcont.2009.03.004
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0956713509000784
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980472494227456
score 12.993085