Mathematical Modeling of Human Glioma Growth Based on Brain Topological Structures: Study of Two Clinical Cases

Autores
Suárez, Cecilia Ana; Maglietti, Felipe Horacio; Colonna, Mario; Breitburd, Karina; Marshall, Guillermo Ricardo
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Gliomas are the most common primary brain tumors and yet almost incurable due mainly to their great invasion capability. This represents a challenge to present clinical oncology. Here, we introduce a mathematical model aiming to improve tumor spreading capability definition. The model consists in a time dependent reaction-diffusion equation in a three-dimensional spatial domain that distinguishes between different brain topological structures. The model uses a series of digitized images from brain slices covering the whole human brain. The Talairach atlas included in the model describes brain structures at different levels. Also, the inclusion of the Brodmann areas allows prediction of the brain functions affected during tumor evolution and the estimation of correlated symptoms. The model is solved numerically using patient-specific parametrization and finite differences. Simulations consider an initial state with cellular proliferation alone (benign tumor), and an advanced state when infiltration starts (malign tumor). Survival time is estimated on the basis of tumor size and location. The model is used to predict tumor evolution in two clinical cases. In the first case, predictions show that real infiltrative areas are underestimated by current diagnostic imaging. In the second case, tumor spreading predictions were shown to be more accurate than those derived from previous models in the literature. Our results suggest that the inclusion of differential migration in glioma growth models constitutes another step towards a better prediction of tumor infiltration at the moment of surgical or radiosurgical target definition. Also, the addition of physiological/psychological considerations to classical anatomical models will provide a better and integral understanding of the patient disease at the moment of deciding therapeutic options, taking into account not only survival but also life quality.
Fil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Maglietti, Felipe Horacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Colonna, Mario. Hospital Aleman; Argentina
Fil: Breitburd, Karina. Hospital Aleman; Argentina
Fil: Marshall, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Materia
ONCOLOGY
GLIOMA
MATHEMATICAL MODEL
GROWTH
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/274277

id CONICETDig_a2c3c71b3178c0c43e1a316a8212d5c5
oai_identifier_str oai:ri.conicet.gov.ar:11336/274277
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mathematical Modeling of Human Glioma Growth Based on Brain Topological Structures: Study of Two Clinical CasesSuárez, Cecilia AnaMaglietti, Felipe HoracioColonna, MarioBreitburd, KarinaMarshall, Guillermo RicardoONCOLOGYGLIOMAMATHEMATICAL MODELGROWTHhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Gliomas are the most common primary brain tumors and yet almost incurable due mainly to their great invasion capability. This represents a challenge to present clinical oncology. Here, we introduce a mathematical model aiming to improve tumor spreading capability definition. The model consists in a time dependent reaction-diffusion equation in a three-dimensional spatial domain that distinguishes between different brain topological structures. The model uses a series of digitized images from brain slices covering the whole human brain. The Talairach atlas included in the model describes brain structures at different levels. Also, the inclusion of the Brodmann areas allows prediction of the brain functions affected during tumor evolution and the estimation of correlated symptoms. The model is solved numerically using patient-specific parametrization and finite differences. Simulations consider an initial state with cellular proliferation alone (benign tumor), and an advanced state when infiltration starts (malign tumor). Survival time is estimated on the basis of tumor size and location. The model is used to predict tumor evolution in two clinical cases. In the first case, predictions show that real infiltrative areas are underestimated by current diagnostic imaging. In the second case, tumor spreading predictions were shown to be more accurate than those derived from previous models in the literature. Our results suggest that the inclusion of differential migration in glioma growth models constitutes another step towards a better prediction of tumor infiltration at the moment of surgical or radiosurgical target definition. Also, the addition of physiological/psychological considerations to classical anatomical models will provide a better and integral understanding of the patient disease at the moment of deciding therapeutic options, taking into account not only survival but also life quality.Fil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Maglietti, Felipe Horacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Colonna, Mario. Hospital Aleman; ArgentinaFil: Breitburd, Karina. Hospital Aleman; ArgentinaFil: Marshall, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaPublic Library of Science2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274277Suárez, Cecilia Ana; Maglietti, Felipe Horacio; Colonna, Mario; Breitburd, Karina; Marshall, Guillermo Ricardo; Mathematical Modeling of Human Glioma Growth Based on Brain Topological Structures: Study of Two Clinical Cases; Public Library of Science; Plos One; 7; 6; 6-2012; 1-111932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0039616info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0039616info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:56:32Zoai:ri.conicet.gov.ar:11336/274277instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:56:33.119CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mathematical Modeling of Human Glioma Growth Based on Brain Topological Structures: Study of Two Clinical Cases
title Mathematical Modeling of Human Glioma Growth Based on Brain Topological Structures: Study of Two Clinical Cases
spellingShingle Mathematical Modeling of Human Glioma Growth Based on Brain Topological Structures: Study of Two Clinical Cases
Suárez, Cecilia Ana
ONCOLOGY
GLIOMA
MATHEMATICAL MODEL
GROWTH
title_short Mathematical Modeling of Human Glioma Growth Based on Brain Topological Structures: Study of Two Clinical Cases
title_full Mathematical Modeling of Human Glioma Growth Based on Brain Topological Structures: Study of Two Clinical Cases
title_fullStr Mathematical Modeling of Human Glioma Growth Based on Brain Topological Structures: Study of Two Clinical Cases
title_full_unstemmed Mathematical Modeling of Human Glioma Growth Based on Brain Topological Structures: Study of Two Clinical Cases
title_sort Mathematical Modeling of Human Glioma Growth Based on Brain Topological Structures: Study of Two Clinical Cases
dc.creator.none.fl_str_mv Suárez, Cecilia Ana
Maglietti, Felipe Horacio
Colonna, Mario
Breitburd, Karina
Marshall, Guillermo Ricardo
author Suárez, Cecilia Ana
author_facet Suárez, Cecilia Ana
Maglietti, Felipe Horacio
Colonna, Mario
Breitburd, Karina
Marshall, Guillermo Ricardo
author_role author
author2 Maglietti, Felipe Horacio
Colonna, Mario
Breitburd, Karina
Marshall, Guillermo Ricardo
author2_role author
author
author
author
dc.subject.none.fl_str_mv ONCOLOGY
GLIOMA
MATHEMATICAL MODEL
GROWTH
topic ONCOLOGY
GLIOMA
MATHEMATICAL MODEL
GROWTH
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Gliomas are the most common primary brain tumors and yet almost incurable due mainly to their great invasion capability. This represents a challenge to present clinical oncology. Here, we introduce a mathematical model aiming to improve tumor spreading capability definition. The model consists in a time dependent reaction-diffusion equation in a three-dimensional spatial domain that distinguishes between different brain topological structures. The model uses a series of digitized images from brain slices covering the whole human brain. The Talairach atlas included in the model describes brain structures at different levels. Also, the inclusion of the Brodmann areas allows prediction of the brain functions affected during tumor evolution and the estimation of correlated symptoms. The model is solved numerically using patient-specific parametrization and finite differences. Simulations consider an initial state with cellular proliferation alone (benign tumor), and an advanced state when infiltration starts (malign tumor). Survival time is estimated on the basis of tumor size and location. The model is used to predict tumor evolution in two clinical cases. In the first case, predictions show that real infiltrative areas are underestimated by current diagnostic imaging. In the second case, tumor spreading predictions were shown to be more accurate than those derived from previous models in the literature. Our results suggest that the inclusion of differential migration in glioma growth models constitutes another step towards a better prediction of tumor infiltration at the moment of surgical or radiosurgical target definition. Also, the addition of physiological/psychological considerations to classical anatomical models will provide a better and integral understanding of the patient disease at the moment of deciding therapeutic options, taking into account not only survival but also life quality.
Fil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Maglietti, Felipe Horacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Colonna, Mario. Hospital Aleman; Argentina
Fil: Breitburd, Karina. Hospital Aleman; Argentina
Fil: Marshall, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
description Gliomas are the most common primary brain tumors and yet almost incurable due mainly to their great invasion capability. This represents a challenge to present clinical oncology. Here, we introduce a mathematical model aiming to improve tumor spreading capability definition. The model consists in a time dependent reaction-diffusion equation in a three-dimensional spatial domain that distinguishes between different brain topological structures. The model uses a series of digitized images from brain slices covering the whole human brain. The Talairach atlas included in the model describes brain structures at different levels. Also, the inclusion of the Brodmann areas allows prediction of the brain functions affected during tumor evolution and the estimation of correlated symptoms. The model is solved numerically using patient-specific parametrization and finite differences. Simulations consider an initial state with cellular proliferation alone (benign tumor), and an advanced state when infiltration starts (malign tumor). Survival time is estimated on the basis of tumor size and location. The model is used to predict tumor evolution in two clinical cases. In the first case, predictions show that real infiltrative areas are underestimated by current diagnostic imaging. In the second case, tumor spreading predictions were shown to be more accurate than those derived from previous models in the literature. Our results suggest that the inclusion of differential migration in glioma growth models constitutes another step towards a better prediction of tumor infiltration at the moment of surgical or radiosurgical target definition. Also, the addition of physiological/psychological considerations to classical anatomical models will provide a better and integral understanding of the patient disease at the moment of deciding therapeutic options, taking into account not only survival but also life quality.
publishDate 2012
dc.date.none.fl_str_mv 2012-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/274277
Suárez, Cecilia Ana; Maglietti, Felipe Horacio; Colonna, Mario; Breitburd, Karina; Marshall, Guillermo Ricardo; Mathematical Modeling of Human Glioma Growth Based on Brain Topological Structures: Study of Two Clinical Cases; Public Library of Science; Plos One; 7; 6; 6-2012; 1-11
1932-6203
CONICET Digital
CONICET
url http://hdl.handle.net/11336/274277
identifier_str_mv Suárez, Cecilia Ana; Maglietti, Felipe Horacio; Colonna, Mario; Breitburd, Karina; Marshall, Guillermo Ricardo; Mathematical Modeling of Human Glioma Growth Based on Brain Topological Structures: Study of Two Clinical Cases; Public Library of Science; Plos One; 7; 6; 6-2012; 1-11
1932-6203
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0039616
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0039616
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848598336320307200
score 12.976206