The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor
- Autores
- Péron, Guillaume; Fleming, Christen H.; Duriez, Olivier; Fluhr, Julie; Itty, Christian; Lambertucci, Sergio Agustin; Safi, Kamran; Shepard, Emily L. C.; Calabrese, Justin
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Collisions of large soaring raptors with wind turbines and other infrastructures represent a growing conservation concern. We describe a way to leverage knowledge about raptor soaring behaviour to forecast the probability that raptors fly in the rotor-swept zone. Soaring raptors are theoretically expected to select energy sources (uplift) optimally, making their flight height dependent on uplift conditions. This approach can be used to forecast collision hazard when planning or operating wind farms. Empirical investigations of the factors influencing flight height have, however, so far been hindered by observation error. We propose a two-pronged approach. First, we fitted state-space models to z-axis GPS tracking data to filter heavy-tailed observation error and estimate the relationship between vertical movement parameters and weather variables describing the energy landscape (thermal and orographic uplift potential). Second, we fitted a mechanistic model of flight height above ground based on aerodynamics and resource selection theories. The approach was replicated for five GPS-tracked Andean condors Vultur gryphus, eight griffon vultures Gyps fulvus, and six golden eagles Aquila chrysaetos. In all individuals, movement parameters correlated with thermal uplift potential in the expected direction. In all species, collision hazard was lowest for high thermal uplift potential values. Species specificities in the presence of a peak in collision hazard for medium values of thermal uplift potential could be explained by differences in wing loading and aspect ratio. Synthesis and applications. Our fitted models convert weather data (thermal uplift potential) into a prediction of collision hazard (probability to fly in the rotor-swept zone), making it possible to prioritize different wind development projects with respect to the relative hazard they would pose to raptors. However, our model should be combined with post-construction monitoring to document, and eventually account for turbine avoidance behaviours in collision rate predictions.
Fil: Péron, Guillaume. Smithsonian Conservation Biology Institute; Estados Unidos
Fil: Fleming, Christen H.. Smithsonian Conservation Biology Institute; Estados Unidos
Fil: Duriez, Olivier. National Research Institute Of Science And Technology-centre de Montpellier; Francia
Fil: Fluhr, Julie. National Research Institute Of Science And Technology-centre de Montpellier; Francia
Fil: Itty, Christian. Université Montpellier II; Francia
Fil: Lambertucci, Sergio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Safi, Kamran. Institut Max Planck for Evolutionary Anthropology; Alemania
Fil: Shepard, Emily L. C.. Swansea University; Reino Unido
Fil: Calabrese, Justin. University of Maryland; Estados Unidos - Materia
-
3D
CONTINUOUS-TIME
FLIGHT HEIGHT
HUMAN–WILDLIFE CONFLICT
MOVEMENT ECOLOGY
RAPTOR
STATE-SPACE MODELS
WIND POWER
WIND TURBINES
Z-AXIS GPS TRACKING DATA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/64359
Ver los metadatos del registro completo
id |
CONICETDig_a24dbb7962c3654aec0e406d1469b36e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/64359 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptorPéron, GuillaumeFleming, Christen H.Duriez, OlivierFluhr, JulieItty, ChristianLambertucci, Sergio AgustinSafi, KamranShepard, Emily L. C.Calabrese, Justin3DCONTINUOUS-TIMEFLIGHT HEIGHTHUMAN–WILDLIFE CONFLICTMOVEMENT ECOLOGYRAPTORSTATE-SPACE MODELSWIND POWERWIND TURBINESZ-AXIS GPS TRACKING DATAhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Collisions of large soaring raptors with wind turbines and other infrastructures represent a growing conservation concern. We describe a way to leverage knowledge about raptor soaring behaviour to forecast the probability that raptors fly in the rotor-swept zone. Soaring raptors are theoretically expected to select energy sources (uplift) optimally, making their flight height dependent on uplift conditions. This approach can be used to forecast collision hazard when planning or operating wind farms. Empirical investigations of the factors influencing flight height have, however, so far been hindered by observation error. We propose a two-pronged approach. First, we fitted state-space models to z-axis GPS tracking data to filter heavy-tailed observation error and estimate the relationship between vertical movement parameters and weather variables describing the energy landscape (thermal and orographic uplift potential). Second, we fitted a mechanistic model of flight height above ground based on aerodynamics and resource selection theories. The approach was replicated for five GPS-tracked Andean condors Vultur gryphus, eight griffon vultures Gyps fulvus, and six golden eagles Aquila chrysaetos. In all individuals, movement parameters correlated with thermal uplift potential in the expected direction. In all species, collision hazard was lowest for high thermal uplift potential values. Species specificities in the presence of a peak in collision hazard for medium values of thermal uplift potential could be explained by differences in wing loading and aspect ratio. Synthesis and applications. Our fitted models convert weather data (thermal uplift potential) into a prediction of collision hazard (probability to fly in the rotor-swept zone), making it possible to prioritize different wind development projects with respect to the relative hazard they would pose to raptors. However, our model should be combined with post-construction monitoring to document, and eventually account for turbine avoidance behaviours in collision rate predictions.Fil: Péron, Guillaume. Smithsonian Conservation Biology Institute; Estados UnidosFil: Fleming, Christen H.. Smithsonian Conservation Biology Institute; Estados UnidosFil: Duriez, Olivier. National Research Institute Of Science And Technology-centre de Montpellier; FranciaFil: Fluhr, Julie. National Research Institute Of Science And Technology-centre de Montpellier; FranciaFil: Itty, Christian. Université Montpellier II; FranciaFil: Lambertucci, Sergio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Safi, Kamran. Institut Max Planck for Evolutionary Anthropology; AlemaniaFil: Shepard, Emily L. C.. Swansea University; Reino UnidoFil: Calabrese, Justin. University of Maryland; Estados UnidosWiley Blackwell Publishing, Inc2017-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64359Péron, Guillaume; Fleming, Christen H.; Duriez, Olivier; Fluhr, Julie; Itty, Christian; et al.; The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor; Wiley Blackwell Publishing, Inc; Journal of Applied Ecology; 54; 6; 27-12-2017; 1895-19060021-8901CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/1365-2664.12909/epdfinfo:eu-repo/semantics/altIdentifier/doi/10.1111/1365-2664.12909info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:47Zoai:ri.conicet.gov.ar:11336/64359instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:48.162CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor |
title |
The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor |
spellingShingle |
The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor Péron, Guillaume 3D CONTINUOUS-TIME FLIGHT HEIGHT HUMAN–WILDLIFE CONFLICT MOVEMENT ECOLOGY RAPTOR STATE-SPACE MODELS WIND POWER WIND TURBINES Z-AXIS GPS TRACKING DATA |
title_short |
The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor |
title_full |
The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor |
title_fullStr |
The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor |
title_full_unstemmed |
The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor |
title_sort |
The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor |
dc.creator.none.fl_str_mv |
Péron, Guillaume Fleming, Christen H. Duriez, Olivier Fluhr, Julie Itty, Christian Lambertucci, Sergio Agustin Safi, Kamran Shepard, Emily L. C. Calabrese, Justin |
author |
Péron, Guillaume |
author_facet |
Péron, Guillaume Fleming, Christen H. Duriez, Olivier Fluhr, Julie Itty, Christian Lambertucci, Sergio Agustin Safi, Kamran Shepard, Emily L. C. Calabrese, Justin |
author_role |
author |
author2 |
Fleming, Christen H. Duriez, Olivier Fluhr, Julie Itty, Christian Lambertucci, Sergio Agustin Safi, Kamran Shepard, Emily L. C. Calabrese, Justin |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
3D CONTINUOUS-TIME FLIGHT HEIGHT HUMAN–WILDLIFE CONFLICT MOVEMENT ECOLOGY RAPTOR STATE-SPACE MODELS WIND POWER WIND TURBINES Z-AXIS GPS TRACKING DATA |
topic |
3D CONTINUOUS-TIME FLIGHT HEIGHT HUMAN–WILDLIFE CONFLICT MOVEMENT ECOLOGY RAPTOR STATE-SPACE MODELS WIND POWER WIND TURBINES Z-AXIS GPS TRACKING DATA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Collisions of large soaring raptors with wind turbines and other infrastructures represent a growing conservation concern. We describe a way to leverage knowledge about raptor soaring behaviour to forecast the probability that raptors fly in the rotor-swept zone. Soaring raptors are theoretically expected to select energy sources (uplift) optimally, making their flight height dependent on uplift conditions. This approach can be used to forecast collision hazard when planning or operating wind farms. Empirical investigations of the factors influencing flight height have, however, so far been hindered by observation error. We propose a two-pronged approach. First, we fitted state-space models to z-axis GPS tracking data to filter heavy-tailed observation error and estimate the relationship between vertical movement parameters and weather variables describing the energy landscape (thermal and orographic uplift potential). Second, we fitted a mechanistic model of flight height above ground based on aerodynamics and resource selection theories. The approach was replicated for five GPS-tracked Andean condors Vultur gryphus, eight griffon vultures Gyps fulvus, and six golden eagles Aquila chrysaetos. In all individuals, movement parameters correlated with thermal uplift potential in the expected direction. In all species, collision hazard was lowest for high thermal uplift potential values. Species specificities in the presence of a peak in collision hazard for medium values of thermal uplift potential could be explained by differences in wing loading and aspect ratio. Synthesis and applications. Our fitted models convert weather data (thermal uplift potential) into a prediction of collision hazard (probability to fly in the rotor-swept zone), making it possible to prioritize different wind development projects with respect to the relative hazard they would pose to raptors. However, our model should be combined with post-construction monitoring to document, and eventually account for turbine avoidance behaviours in collision rate predictions. Fil: Péron, Guillaume. Smithsonian Conservation Biology Institute; Estados Unidos Fil: Fleming, Christen H.. Smithsonian Conservation Biology Institute; Estados Unidos Fil: Duriez, Olivier. National Research Institute Of Science And Technology-centre de Montpellier; Francia Fil: Fluhr, Julie. National Research Institute Of Science And Technology-centre de Montpellier; Francia Fil: Itty, Christian. Université Montpellier II; Francia Fil: Lambertucci, Sergio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina Fil: Safi, Kamran. Institut Max Planck for Evolutionary Anthropology; Alemania Fil: Shepard, Emily L. C.. Swansea University; Reino Unido Fil: Calabrese, Justin. University of Maryland; Estados Unidos |
description |
Collisions of large soaring raptors with wind turbines and other infrastructures represent a growing conservation concern. We describe a way to leverage knowledge about raptor soaring behaviour to forecast the probability that raptors fly in the rotor-swept zone. Soaring raptors are theoretically expected to select energy sources (uplift) optimally, making their flight height dependent on uplift conditions. This approach can be used to forecast collision hazard when planning or operating wind farms. Empirical investigations of the factors influencing flight height have, however, so far been hindered by observation error. We propose a two-pronged approach. First, we fitted state-space models to z-axis GPS tracking data to filter heavy-tailed observation error and estimate the relationship between vertical movement parameters and weather variables describing the energy landscape (thermal and orographic uplift potential). Second, we fitted a mechanistic model of flight height above ground based on aerodynamics and resource selection theories. The approach was replicated for five GPS-tracked Andean condors Vultur gryphus, eight griffon vultures Gyps fulvus, and six golden eagles Aquila chrysaetos. In all individuals, movement parameters correlated with thermal uplift potential in the expected direction. In all species, collision hazard was lowest for high thermal uplift potential values. Species specificities in the presence of a peak in collision hazard for medium values of thermal uplift potential could be explained by differences in wing loading and aspect ratio. Synthesis and applications. Our fitted models convert weather data (thermal uplift potential) into a prediction of collision hazard (probability to fly in the rotor-swept zone), making it possible to prioritize different wind development projects with respect to the relative hazard they would pose to raptors. However, our model should be combined with post-construction monitoring to document, and eventually account for turbine avoidance behaviours in collision rate predictions. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-27 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/64359 Péron, Guillaume; Fleming, Christen H.; Duriez, Olivier; Fluhr, Julie; Itty, Christian; et al.; The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor; Wiley Blackwell Publishing, Inc; Journal of Applied Ecology; 54; 6; 27-12-2017; 1895-1906 0021-8901 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/64359 |
identifier_str_mv |
Péron, Guillaume; Fleming, Christen H.; Duriez, Olivier; Fluhr, Julie; Itty, Christian; et al.; The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor; Wiley Blackwell Publishing, Inc; Journal of Applied Ecology; 54; 6; 27-12-2017; 1895-1906 0021-8901 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/1365-2664.12909/epdf info:eu-repo/semantics/altIdentifier/doi/10.1111/1365-2664.12909 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613192008859648 |
score |
13.070432 |