The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor

Autores
Péron, Guillaume; Fleming, Christen H.; Duriez, Olivier; Fluhr, Julie; Itty, Christian; Lambertucci, Sergio Agustin; Safi, Kamran; Shepard, Emily L. C.; Calabrese, Justin
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Collisions of large soaring raptors with wind turbines and other infrastructures represent a growing conservation concern. We describe a way to leverage knowledge about raptor soaring behaviour to forecast the probability that raptors fly in the rotor-swept zone. Soaring raptors are theoretically expected to select energy sources (uplift) optimally, making their flight height dependent on uplift conditions. This approach can be used to forecast collision hazard when planning or operating wind farms. Empirical investigations of the factors influencing flight height have, however, so far been hindered by observation error. We propose a two-pronged approach. First, we fitted state-space models to z-axis GPS tracking data to filter heavy-tailed observation error and estimate the relationship between vertical movement parameters and weather variables describing the energy landscape (thermal and orographic uplift potential). Second, we fitted a mechanistic model of flight height above ground based on aerodynamics and resource selection theories. The approach was replicated for five GPS-tracked Andean condors Vultur gryphus, eight griffon vultures Gyps fulvus, and six golden eagles Aquila chrysaetos. In all individuals, movement parameters correlated with thermal uplift potential in the expected direction. In all species, collision hazard was lowest for high thermal uplift potential values. Species specificities in the presence of a peak in collision hazard for medium values of thermal uplift potential could be explained by differences in wing loading and aspect ratio. Synthesis and applications. Our fitted models convert weather data (thermal uplift potential) into a prediction of collision hazard (probability to fly in the rotor-swept zone), making it possible to prioritize different wind development projects with respect to the relative hazard they would pose to raptors. However, our model should be combined with post-construction monitoring to document, and eventually account for turbine avoidance behaviours in collision rate predictions.
Fil: Péron, Guillaume. Smithsonian Conservation Biology Institute; Estados Unidos
Fil: Fleming, Christen H.. Smithsonian Conservation Biology Institute; Estados Unidos
Fil: Duriez, Olivier. National Research Institute Of Science And Technology-centre de Montpellier; Francia
Fil: Fluhr, Julie. National Research Institute Of Science And Technology-centre de Montpellier; Francia
Fil: Itty, Christian. Université Montpellier II; Francia
Fil: Lambertucci, Sergio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Safi, Kamran. Institut Max Planck for Evolutionary Anthropology; Alemania
Fil: Shepard, Emily L. C.. Swansea University; Reino Unido
Fil: Calabrese, Justin. University of Maryland; Estados Unidos
Materia
3D
CONTINUOUS-TIME
FLIGHT HEIGHT
HUMAN–WILDLIFE CONFLICT
MOVEMENT ECOLOGY
RAPTOR
STATE-SPACE MODELS
WIND POWER
WIND TURBINES
Z-AXIS GPS TRACKING DATA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/64359

id CONICETDig_a24dbb7962c3654aec0e406d1469b36e
oai_identifier_str oai:ri.conicet.gov.ar:11336/64359
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptorPéron, GuillaumeFleming, Christen H.Duriez, OlivierFluhr, JulieItty, ChristianLambertucci, Sergio AgustinSafi, KamranShepard, Emily L. C.Calabrese, Justin3DCONTINUOUS-TIMEFLIGHT HEIGHTHUMAN–WILDLIFE CONFLICTMOVEMENT ECOLOGYRAPTORSTATE-SPACE MODELSWIND POWERWIND TURBINESZ-AXIS GPS TRACKING DATAhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Collisions of large soaring raptors with wind turbines and other infrastructures represent a growing conservation concern. We describe a way to leverage knowledge about raptor soaring behaviour to forecast the probability that raptors fly in the rotor-swept zone. Soaring raptors are theoretically expected to select energy sources (uplift) optimally, making their flight height dependent on uplift conditions. This approach can be used to forecast collision hazard when planning or operating wind farms. Empirical investigations of the factors influencing flight height have, however, so far been hindered by observation error. We propose a two-pronged approach. First, we fitted state-space models to z-axis GPS tracking data to filter heavy-tailed observation error and estimate the relationship between vertical movement parameters and weather variables describing the energy landscape (thermal and orographic uplift potential). Second, we fitted a mechanistic model of flight height above ground based on aerodynamics and resource selection theories. The approach was replicated for five GPS-tracked Andean condors Vultur gryphus, eight griffon vultures Gyps fulvus, and six golden eagles Aquila chrysaetos. In all individuals, movement parameters correlated with thermal uplift potential in the expected direction. In all species, collision hazard was lowest for high thermal uplift potential values. Species specificities in the presence of a peak in collision hazard for medium values of thermal uplift potential could be explained by differences in wing loading and aspect ratio. Synthesis and applications. Our fitted models convert weather data (thermal uplift potential) into a prediction of collision hazard (probability to fly in the rotor-swept zone), making it possible to prioritize different wind development projects with respect to the relative hazard they would pose to raptors. However, our model should be combined with post-construction monitoring to document, and eventually account for turbine avoidance behaviours in collision rate predictions.Fil: Péron, Guillaume. Smithsonian Conservation Biology Institute; Estados UnidosFil: Fleming, Christen H.. Smithsonian Conservation Biology Institute; Estados UnidosFil: Duriez, Olivier. National Research Institute Of Science And Technology-centre de Montpellier; FranciaFil: Fluhr, Julie. National Research Institute Of Science And Technology-centre de Montpellier; FranciaFil: Itty, Christian. Université Montpellier II; FranciaFil: Lambertucci, Sergio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Safi, Kamran. Institut Max Planck for Evolutionary Anthropology; AlemaniaFil: Shepard, Emily L. C.. Swansea University; Reino UnidoFil: Calabrese, Justin. University of Maryland; Estados UnidosWiley Blackwell Publishing, Inc2017-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64359Péron, Guillaume; Fleming, Christen H.; Duriez, Olivier; Fluhr, Julie; Itty, Christian; et al.; The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor; Wiley Blackwell Publishing, Inc; Journal of Applied Ecology; 54; 6; 27-12-2017; 1895-19060021-8901CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/1365-2664.12909/epdfinfo:eu-repo/semantics/altIdentifier/doi/10.1111/1365-2664.12909info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:47Zoai:ri.conicet.gov.ar:11336/64359instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:48.162CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor
title The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor
spellingShingle The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor
Péron, Guillaume
3D
CONTINUOUS-TIME
FLIGHT HEIGHT
HUMAN–WILDLIFE CONFLICT
MOVEMENT ECOLOGY
RAPTOR
STATE-SPACE MODELS
WIND POWER
WIND TURBINES
Z-AXIS GPS TRACKING DATA
title_short The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor
title_full The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor
title_fullStr The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor
title_full_unstemmed The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor
title_sort The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor
dc.creator.none.fl_str_mv Péron, Guillaume
Fleming, Christen H.
Duriez, Olivier
Fluhr, Julie
Itty, Christian
Lambertucci, Sergio Agustin
Safi, Kamran
Shepard, Emily L. C.
Calabrese, Justin
author Péron, Guillaume
author_facet Péron, Guillaume
Fleming, Christen H.
Duriez, Olivier
Fluhr, Julie
Itty, Christian
Lambertucci, Sergio Agustin
Safi, Kamran
Shepard, Emily L. C.
Calabrese, Justin
author_role author
author2 Fleming, Christen H.
Duriez, Olivier
Fluhr, Julie
Itty, Christian
Lambertucci, Sergio Agustin
Safi, Kamran
Shepard, Emily L. C.
Calabrese, Justin
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv 3D
CONTINUOUS-TIME
FLIGHT HEIGHT
HUMAN–WILDLIFE CONFLICT
MOVEMENT ECOLOGY
RAPTOR
STATE-SPACE MODELS
WIND POWER
WIND TURBINES
Z-AXIS GPS TRACKING DATA
topic 3D
CONTINUOUS-TIME
FLIGHT HEIGHT
HUMAN–WILDLIFE CONFLICT
MOVEMENT ECOLOGY
RAPTOR
STATE-SPACE MODELS
WIND POWER
WIND TURBINES
Z-AXIS GPS TRACKING DATA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Collisions of large soaring raptors with wind turbines and other infrastructures represent a growing conservation concern. We describe a way to leverage knowledge about raptor soaring behaviour to forecast the probability that raptors fly in the rotor-swept zone. Soaring raptors are theoretically expected to select energy sources (uplift) optimally, making their flight height dependent on uplift conditions. This approach can be used to forecast collision hazard when planning or operating wind farms. Empirical investigations of the factors influencing flight height have, however, so far been hindered by observation error. We propose a two-pronged approach. First, we fitted state-space models to z-axis GPS tracking data to filter heavy-tailed observation error and estimate the relationship between vertical movement parameters and weather variables describing the energy landscape (thermal and orographic uplift potential). Second, we fitted a mechanistic model of flight height above ground based on aerodynamics and resource selection theories. The approach was replicated for five GPS-tracked Andean condors Vultur gryphus, eight griffon vultures Gyps fulvus, and six golden eagles Aquila chrysaetos. In all individuals, movement parameters correlated with thermal uplift potential in the expected direction. In all species, collision hazard was lowest for high thermal uplift potential values. Species specificities in the presence of a peak in collision hazard for medium values of thermal uplift potential could be explained by differences in wing loading and aspect ratio. Synthesis and applications. Our fitted models convert weather data (thermal uplift potential) into a prediction of collision hazard (probability to fly in the rotor-swept zone), making it possible to prioritize different wind development projects with respect to the relative hazard they would pose to raptors. However, our model should be combined with post-construction monitoring to document, and eventually account for turbine avoidance behaviours in collision rate predictions.
Fil: Péron, Guillaume. Smithsonian Conservation Biology Institute; Estados Unidos
Fil: Fleming, Christen H.. Smithsonian Conservation Biology Institute; Estados Unidos
Fil: Duriez, Olivier. National Research Institute Of Science And Technology-centre de Montpellier; Francia
Fil: Fluhr, Julie. National Research Institute Of Science And Technology-centre de Montpellier; Francia
Fil: Itty, Christian. Université Montpellier II; Francia
Fil: Lambertucci, Sergio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
Fil: Safi, Kamran. Institut Max Planck for Evolutionary Anthropology; Alemania
Fil: Shepard, Emily L. C.. Swansea University; Reino Unido
Fil: Calabrese, Justin. University of Maryland; Estados Unidos
description Collisions of large soaring raptors with wind turbines and other infrastructures represent a growing conservation concern. We describe a way to leverage knowledge about raptor soaring behaviour to forecast the probability that raptors fly in the rotor-swept zone. Soaring raptors are theoretically expected to select energy sources (uplift) optimally, making their flight height dependent on uplift conditions. This approach can be used to forecast collision hazard when planning or operating wind farms. Empirical investigations of the factors influencing flight height have, however, so far been hindered by observation error. We propose a two-pronged approach. First, we fitted state-space models to z-axis GPS tracking data to filter heavy-tailed observation error and estimate the relationship between vertical movement parameters and weather variables describing the energy landscape (thermal and orographic uplift potential). Second, we fitted a mechanistic model of flight height above ground based on aerodynamics and resource selection theories. The approach was replicated for five GPS-tracked Andean condors Vultur gryphus, eight griffon vultures Gyps fulvus, and six golden eagles Aquila chrysaetos. In all individuals, movement parameters correlated with thermal uplift potential in the expected direction. In all species, collision hazard was lowest for high thermal uplift potential values. Species specificities in the presence of a peak in collision hazard for medium values of thermal uplift potential could be explained by differences in wing loading and aspect ratio. Synthesis and applications. Our fitted models convert weather data (thermal uplift potential) into a prediction of collision hazard (probability to fly in the rotor-swept zone), making it possible to prioritize different wind development projects with respect to the relative hazard they would pose to raptors. However, our model should be combined with post-construction monitoring to document, and eventually account for turbine avoidance behaviours in collision rate predictions.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/64359
Péron, Guillaume; Fleming, Christen H.; Duriez, Olivier; Fluhr, Julie; Itty, Christian; et al.; The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor; Wiley Blackwell Publishing, Inc; Journal of Applied Ecology; 54; 6; 27-12-2017; 1895-1906
0021-8901
CONICET Digital
CONICET
url http://hdl.handle.net/11336/64359
identifier_str_mv Péron, Guillaume; Fleming, Christen H.; Duriez, Olivier; Fluhr, Julie; Itty, Christian; et al.; The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor; Wiley Blackwell Publishing, Inc; Journal of Applied Ecology; 54; 6; 27-12-2017; 1895-1906
0021-8901
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/1365-2664.12909/epdf
info:eu-repo/semantics/altIdentifier/doi/10.1111/1365-2664.12909
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613192008859648
score 13.070432