A global two-temperature corona and inner heliosphere model: A comprehensive validation study
- Autores
- Jin, M.; Manchester, W.B.; Van Der Holst, B.; Gruesbeck, J.R.; Frazin, R.A.; Landi, E.; Vasquez, Alberto Marcos; Lamy, Philippe; Llebaria, Antoine; Fedorov, A.; Toth, Gabor; Gombosi, Tamas I.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfvén-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B, Advanced Composition Explorer (ACE), and Venus Express, we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode/Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE/Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks. © 2012. The American Astronomical Society. All rights reserved.
Fil: Jin, M.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Manchester, W.B.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Van Der Holst, B.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Gruesbeck, J.R.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Frazin, R.A.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Landi, E.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Vasquez, Alberto Marcos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Lamy, Philippe. Laboratoire D'astrophysique de Marseille; Francia
Fil: Llebaria, Antoine. Laboratoire D'astrophysique de Marseille; Francia
Fil: Fedorov, A.. Laboratoire D'astrophysique de Marseille; Francia
Fil: Toth, Gabor. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Gombosi, Tamas I.. University Of Michigan, Ann Arbor; Estados Unidos - Materia
-
INTERPLANETARY MEDIUM
MAGNETOHYDRODYNAMICS (MHD)
METHODS: NUMERICAL
SOLAR WIND
SUN: CORONA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/76787
Ver los metadatos del registro completo
id |
CONICETDig_a21c0cd05fef8146b8bc5ea2ccf2532b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/76787 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A global two-temperature corona and inner heliosphere model: A comprehensive validation studyJin, M.Manchester, W.B.Van Der Holst, B.Gruesbeck, J.R.Frazin, R.A.Landi, E.Vasquez, Alberto MarcosLamy, PhilippeLlebaria, AntoineFedorov, A.Toth, GaborGombosi, Tamas I.INTERPLANETARY MEDIUMMAGNETOHYDRODYNAMICS (MHD)METHODS: NUMERICALSOLAR WINDSUN: CORONAhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfvén-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B, Advanced Composition Explorer (ACE), and Venus Express, we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode/Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE/Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks. © 2012. The American Astronomical Society. All rights reserved.Fil: Jin, M.. University Of Michigan, Ann Arbor; Estados UnidosFil: Manchester, W.B.. University Of Michigan, Ann Arbor; Estados UnidosFil: Van Der Holst, B.. University Of Michigan, Ann Arbor; Estados UnidosFil: Gruesbeck, J.R.. University Of Michigan, Ann Arbor; Estados UnidosFil: Frazin, R.A.. University Of Michigan, Ann Arbor; Estados UnidosFil: Landi, E.. University Of Michigan, Ann Arbor; Estados UnidosFil: Vasquez, Alberto Marcos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Lamy, Philippe. Laboratoire D'astrophysique de Marseille; FranciaFil: Llebaria, Antoine. Laboratoire D'astrophysique de Marseille; FranciaFil: Fedorov, A.. Laboratoire D'astrophysique de Marseille; FranciaFil: Toth, Gabor. University Of Michigan, Ann Arbor; Estados UnidosFil: Gombosi, Tamas I.. University Of Michigan, Ann Arbor; Estados UnidosIOP Publishing2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76787Jin, M.; Manchester, W.B.; Van Der Holst, B.; Gruesbeck, J.R.; Frazin, R.A.; et al.; A global two-temperature corona and inner heliosphere model: A comprehensive validation study; IOP Publishing; Astrophysical Journal; 745; 1; 1-2012; 6-200004-637XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/745/1/6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:33Zoai:ri.conicet.gov.ar:11336/76787instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:34.103CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A global two-temperature corona and inner heliosphere model: A comprehensive validation study |
title |
A global two-temperature corona and inner heliosphere model: A comprehensive validation study |
spellingShingle |
A global two-temperature corona and inner heliosphere model: A comprehensive validation study Jin, M. INTERPLANETARY MEDIUM MAGNETOHYDRODYNAMICS (MHD) METHODS: NUMERICAL SOLAR WIND SUN: CORONA |
title_short |
A global two-temperature corona and inner heliosphere model: A comprehensive validation study |
title_full |
A global two-temperature corona and inner heliosphere model: A comprehensive validation study |
title_fullStr |
A global two-temperature corona and inner heliosphere model: A comprehensive validation study |
title_full_unstemmed |
A global two-temperature corona and inner heliosphere model: A comprehensive validation study |
title_sort |
A global two-temperature corona and inner heliosphere model: A comprehensive validation study |
dc.creator.none.fl_str_mv |
Jin, M. Manchester, W.B. Van Der Holst, B. Gruesbeck, J.R. Frazin, R.A. Landi, E. Vasquez, Alberto Marcos Lamy, Philippe Llebaria, Antoine Fedorov, A. Toth, Gabor Gombosi, Tamas I. |
author |
Jin, M. |
author_facet |
Jin, M. Manchester, W.B. Van Der Holst, B. Gruesbeck, J.R. Frazin, R.A. Landi, E. Vasquez, Alberto Marcos Lamy, Philippe Llebaria, Antoine Fedorov, A. Toth, Gabor Gombosi, Tamas I. |
author_role |
author |
author2 |
Manchester, W.B. Van Der Holst, B. Gruesbeck, J.R. Frazin, R.A. Landi, E. Vasquez, Alberto Marcos Lamy, Philippe Llebaria, Antoine Fedorov, A. Toth, Gabor Gombosi, Tamas I. |
author2_role |
author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
INTERPLANETARY MEDIUM MAGNETOHYDRODYNAMICS (MHD) METHODS: NUMERICAL SOLAR WIND SUN: CORONA |
topic |
INTERPLANETARY MEDIUM MAGNETOHYDRODYNAMICS (MHD) METHODS: NUMERICAL SOLAR WIND SUN: CORONA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfvén-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B, Advanced Composition Explorer (ACE), and Venus Express, we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode/Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE/Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks. © 2012. The American Astronomical Society. All rights reserved. Fil: Jin, M.. University Of Michigan, Ann Arbor; Estados Unidos Fil: Manchester, W.B.. University Of Michigan, Ann Arbor; Estados Unidos Fil: Van Der Holst, B.. University Of Michigan, Ann Arbor; Estados Unidos Fil: Gruesbeck, J.R.. University Of Michigan, Ann Arbor; Estados Unidos Fil: Frazin, R.A.. University Of Michigan, Ann Arbor; Estados Unidos Fil: Landi, E.. University Of Michigan, Ann Arbor; Estados Unidos Fil: Vasquez, Alberto Marcos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Lamy, Philippe. Laboratoire D'astrophysique de Marseille; Francia Fil: Llebaria, Antoine. Laboratoire D'astrophysique de Marseille; Francia Fil: Fedorov, A.. Laboratoire D'astrophysique de Marseille; Francia Fil: Toth, Gabor. University Of Michigan, Ann Arbor; Estados Unidos Fil: Gombosi, Tamas I.. University Of Michigan, Ann Arbor; Estados Unidos |
description |
The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfvén-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B, Advanced Composition Explorer (ACE), and Venus Express, we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode/Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE/Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks. © 2012. The American Astronomical Society. All rights reserved. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/76787 Jin, M.; Manchester, W.B.; Van Der Holst, B.; Gruesbeck, J.R.; Frazin, R.A.; et al.; A global two-temperature corona and inner heliosphere model: A comprehensive validation study; IOP Publishing; Astrophysical Journal; 745; 1; 1-2012; 6-20 0004-637X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/76787 |
identifier_str_mv |
Jin, M.; Manchester, W.B.; Van Der Holst, B.; Gruesbeck, J.R.; Frazin, R.A.; et al.; A global two-temperature corona and inner heliosphere model: A comprehensive validation study; IOP Publishing; Astrophysical Journal; 745; 1; 1-2012; 6-20 0004-637X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/745/1/6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613721343655936 |
score |
13.070432 |