A global two-temperature corona and inner heliosphere model: A comprehensive validation study

Autores
Jin, M.; Manchester, W.B.; Van Der Holst, B.; Gruesbeck, J.R.; Frazin, R.A.; Landi, E.; Vasquez, Alberto Marcos; Lamy, Philippe; Llebaria, Antoine; Fedorov, A.; Toth, Gabor; Gombosi, Tamas I.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfvén-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B, Advanced Composition Explorer (ACE), and Venus Express, we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode/Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE/Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks. © 2012. The American Astronomical Society. All rights reserved.
Fil: Jin, M.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Manchester, W.B.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Van Der Holst, B.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Gruesbeck, J.R.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Frazin, R.A.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Landi, E.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Vasquez, Alberto Marcos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Lamy, Philippe. Laboratoire D'astrophysique de Marseille; Francia
Fil: Llebaria, Antoine. Laboratoire D'astrophysique de Marseille; Francia
Fil: Fedorov, A.. Laboratoire D'astrophysique de Marseille; Francia
Fil: Toth, Gabor. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Gombosi, Tamas I.. University Of Michigan, Ann Arbor; Estados Unidos
Materia
INTERPLANETARY MEDIUM
MAGNETOHYDRODYNAMICS (MHD)
METHODS: NUMERICAL
SOLAR WIND
SUN: CORONA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/76787

id CONICETDig_a21c0cd05fef8146b8bc5ea2ccf2532b
oai_identifier_str oai:ri.conicet.gov.ar:11336/76787
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A global two-temperature corona and inner heliosphere model: A comprehensive validation studyJin, M.Manchester, W.B.Van Der Holst, B.Gruesbeck, J.R.Frazin, R.A.Landi, E.Vasquez, Alberto MarcosLamy, PhilippeLlebaria, AntoineFedorov, A.Toth, GaborGombosi, Tamas I.INTERPLANETARY MEDIUMMAGNETOHYDRODYNAMICS (MHD)METHODS: NUMERICALSOLAR WINDSUN: CORONAhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfvén-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B, Advanced Composition Explorer (ACE), and Venus Express, we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode/Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE/Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks. © 2012. The American Astronomical Society. All rights reserved.Fil: Jin, M.. University Of Michigan, Ann Arbor; Estados UnidosFil: Manchester, W.B.. University Of Michigan, Ann Arbor; Estados UnidosFil: Van Der Holst, B.. University Of Michigan, Ann Arbor; Estados UnidosFil: Gruesbeck, J.R.. University Of Michigan, Ann Arbor; Estados UnidosFil: Frazin, R.A.. University Of Michigan, Ann Arbor; Estados UnidosFil: Landi, E.. University Of Michigan, Ann Arbor; Estados UnidosFil: Vasquez, Alberto Marcos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Lamy, Philippe. Laboratoire D'astrophysique de Marseille; FranciaFil: Llebaria, Antoine. Laboratoire D'astrophysique de Marseille; FranciaFil: Fedorov, A.. Laboratoire D'astrophysique de Marseille; FranciaFil: Toth, Gabor. University Of Michigan, Ann Arbor; Estados UnidosFil: Gombosi, Tamas I.. University Of Michigan, Ann Arbor; Estados UnidosIOP Publishing2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76787Jin, M.; Manchester, W.B.; Van Der Holst, B.; Gruesbeck, J.R.; Frazin, R.A.; et al.; A global two-temperature corona and inner heliosphere model: A comprehensive validation study; IOP Publishing; Astrophysical Journal; 745; 1; 1-2012; 6-200004-637XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/745/1/6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:33Zoai:ri.conicet.gov.ar:11336/76787instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:34.103CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A global two-temperature corona and inner heliosphere model: A comprehensive validation study
title A global two-temperature corona and inner heliosphere model: A comprehensive validation study
spellingShingle A global two-temperature corona and inner heliosphere model: A comprehensive validation study
Jin, M.
INTERPLANETARY MEDIUM
MAGNETOHYDRODYNAMICS (MHD)
METHODS: NUMERICAL
SOLAR WIND
SUN: CORONA
title_short A global two-temperature corona and inner heliosphere model: A comprehensive validation study
title_full A global two-temperature corona and inner heliosphere model: A comprehensive validation study
title_fullStr A global two-temperature corona and inner heliosphere model: A comprehensive validation study
title_full_unstemmed A global two-temperature corona and inner heliosphere model: A comprehensive validation study
title_sort A global two-temperature corona and inner heliosphere model: A comprehensive validation study
dc.creator.none.fl_str_mv Jin, M.
Manchester, W.B.
Van Der Holst, B.
Gruesbeck, J.R.
Frazin, R.A.
Landi, E.
Vasquez, Alberto Marcos
Lamy, Philippe
Llebaria, Antoine
Fedorov, A.
Toth, Gabor
Gombosi, Tamas I.
author Jin, M.
author_facet Jin, M.
Manchester, W.B.
Van Der Holst, B.
Gruesbeck, J.R.
Frazin, R.A.
Landi, E.
Vasquez, Alberto Marcos
Lamy, Philippe
Llebaria, Antoine
Fedorov, A.
Toth, Gabor
Gombosi, Tamas I.
author_role author
author2 Manchester, W.B.
Van Der Holst, B.
Gruesbeck, J.R.
Frazin, R.A.
Landi, E.
Vasquez, Alberto Marcos
Lamy, Philippe
Llebaria, Antoine
Fedorov, A.
Toth, Gabor
Gombosi, Tamas I.
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv INTERPLANETARY MEDIUM
MAGNETOHYDRODYNAMICS (MHD)
METHODS: NUMERICAL
SOLAR WIND
SUN: CORONA
topic INTERPLANETARY MEDIUM
MAGNETOHYDRODYNAMICS (MHD)
METHODS: NUMERICAL
SOLAR WIND
SUN: CORONA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfvén-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B, Advanced Composition Explorer (ACE), and Venus Express, we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode/Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE/Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks. © 2012. The American Astronomical Society. All rights reserved.
Fil: Jin, M.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Manchester, W.B.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Van Der Holst, B.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Gruesbeck, J.R.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Frazin, R.A.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Landi, E.. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Vasquez, Alberto Marcos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Lamy, Philippe. Laboratoire D'astrophysique de Marseille; Francia
Fil: Llebaria, Antoine. Laboratoire D'astrophysique de Marseille; Francia
Fil: Fedorov, A.. Laboratoire D'astrophysique de Marseille; Francia
Fil: Toth, Gabor. University Of Michigan, Ann Arbor; Estados Unidos
Fil: Gombosi, Tamas I.. University Of Michigan, Ann Arbor; Estados Unidos
description The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfvén-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B, Advanced Composition Explorer (ACE), and Venus Express, we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode/Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE/Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks. © 2012. The American Astronomical Society. All rights reserved.
publishDate 2012
dc.date.none.fl_str_mv 2012-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/76787
Jin, M.; Manchester, W.B.; Van Der Holst, B.; Gruesbeck, J.R.; Frazin, R.A.; et al.; A global two-temperature corona and inner heliosphere model: A comprehensive validation study; IOP Publishing; Astrophysical Journal; 745; 1; 1-2012; 6-20
0004-637X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/76787
identifier_str_mv Jin, M.; Manchester, W.B.; Van Der Holst, B.; Gruesbeck, J.R.; Frazin, R.A.; et al.; A global two-temperature corona and inner heliosphere model: A comprehensive validation study; IOP Publishing; Astrophysical Journal; 745; 1; 1-2012; 6-20
0004-637X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/745/1/6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613721343655936
score 13.070432