A data-driven, two-temperature solar model with Alfven waves

Autores
van der Holst, B.; Manchester IV, W. B.; Frazin, R. A.; Vasquez, Alberto Marcos; Tóth, G.; Gombosi, T. I.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We have developed a new three-dimensional magnetohydrodynamic (MHD) solar wind model coupled to the Space Weather Modeling Framework (SWMF), that solves for the different electron and proton temperatures. The collisions between the electrons and protons are taken into account as well as the anisotropic thermal heat conduction of the electrons. The solar wind is assumed to be accelerated by the Alfv en waves. In this paper, we do not consider the heating of closed magnetic loops and helmet streamers, but do address the heating of the protons by the Kolmogorov dissipation of the Alfv n waves in open field line regions. The inner boundary conditions for this solar wind model are obtained from observations and an empirical model. The Wang-Sheeley-Arge model is used to determine the Alfv n wave energy density at the inner boundary. The electron density and temperature at the inner boundary are obtained from the differential emission measure tomography applied to the extreme ultraviolet images of the STEREO A and B spacecraft. This new solar wind model is validated for solar minimum Carrington rotation 2077 (November 20 through December 17, 2008). Due to the very low activity during this rotation, this time period is suitable for comparing the simulated Corotating Interaction Regions (CIRs) with in-situ ACE/WIND data. Although we do not capture all magnetohydrodynamic variables perfectly, we do find that the time of occurance and the density of CIRs are better predicted than by our previous semi-empirical wind model in the SWMF that was based on a spatially reduced adiabatic index to account for the plasma heating.
Fil: van der Holst, B.. University of Michigan; Estados Unidos
Fil: Manchester IV, W. B.. University of Michigan; Estados Unidos
Fil: Frazin, R. A.. University of Michigan; Estados Unidos
Fil: Vasquez, Alberto Marcos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Tóth, G.. University of Michigan; Estados Unidos
Fil: Gombosi, T. I.. University of Michigan; Estados Unidos
Materia
Solar Wind
Mhd
Sun: Corona
Sun: Waves
Interplanetary Medium
Methods: Numerical
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20160

id CONICETDig_2943ce044a3337f7f115071d036f38f7
oai_identifier_str oai:ri.conicet.gov.ar:11336/20160
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A data-driven, two-temperature solar model with Alfven wavesvan der Holst, B.Manchester IV, W. B.Frazin, R. A.Vasquez, Alberto MarcosTóth, G.Gombosi, T. I.Solar WindMhdSun: CoronaSun: WavesInterplanetary MediumMethods: Numericalhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We have developed a new three-dimensional magnetohydrodynamic (MHD) solar wind model coupled to the Space Weather Modeling Framework (SWMF), that solves for the different electron and proton temperatures. The collisions between the electrons and protons are taken into account as well as the anisotropic thermal heat conduction of the electrons. The solar wind is assumed to be accelerated by the Alfv en waves. In this paper, we do not consider the heating of closed magnetic loops and helmet streamers, but do address the heating of the protons by the Kolmogorov dissipation of the Alfv n waves in open field line regions. The inner boundary conditions for this solar wind model are obtained from observations and an empirical model. The Wang-Sheeley-Arge model is used to determine the Alfv n wave energy density at the inner boundary. The electron density and temperature at the inner boundary are obtained from the differential emission measure tomography applied to the extreme ultraviolet images of the STEREO A and B spacecraft. This new solar wind model is validated for solar minimum Carrington rotation 2077 (November 20 through December 17, 2008). Due to the very low activity during this rotation, this time period is suitable for comparing the simulated Corotating Interaction Regions (CIRs) with in-situ ACE/WIND data. Although we do not capture all magnetohydrodynamic variables perfectly, we do find that the time of occurance and the density of CIRs are better predicted than by our previous semi-empirical wind model in the SWMF that was based on a spatially reduced adiabatic index to account for the plasma heating.Fil: van der Holst, B.. University of Michigan; Estados UnidosFil: Manchester IV, W. B.. University of Michigan; Estados UnidosFil: Frazin, R. A.. University of Michigan; Estados UnidosFil: Vasquez, Alberto Marcos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Tóth, G.. University of Michigan; Estados UnidosFil: Gombosi, T. I.. University of Michigan; Estados UnidosIOP Publishing2010-12-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20160van der Holst, B.; Manchester IV, W. B.; Frazin, R. A.; Vasquez, Alberto Marcos; Tóth, G.; et al.; A data-driven, two-temperature solar model with Alfven waves; IOP Publishing; Astrophysical Journal; 725; 1; 10-12-2010; 1373-13830004-637XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/725/1/1373info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0004-637X/725/1/1373/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:14Zoai:ri.conicet.gov.ar:11336/20160instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:14.638CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A data-driven, two-temperature solar model with Alfven waves
title A data-driven, two-temperature solar model with Alfven waves
spellingShingle A data-driven, two-temperature solar model with Alfven waves
van der Holst, B.
Solar Wind
Mhd
Sun: Corona
Sun: Waves
Interplanetary Medium
Methods: Numerical
title_short A data-driven, two-temperature solar model with Alfven waves
title_full A data-driven, two-temperature solar model with Alfven waves
title_fullStr A data-driven, two-temperature solar model with Alfven waves
title_full_unstemmed A data-driven, two-temperature solar model with Alfven waves
title_sort A data-driven, two-temperature solar model with Alfven waves
dc.creator.none.fl_str_mv van der Holst, B.
Manchester IV, W. B.
Frazin, R. A.
Vasquez, Alberto Marcos
Tóth, G.
Gombosi, T. I.
author van der Holst, B.
author_facet van der Holst, B.
Manchester IV, W. B.
Frazin, R. A.
Vasquez, Alberto Marcos
Tóth, G.
Gombosi, T. I.
author_role author
author2 Manchester IV, W. B.
Frazin, R. A.
Vasquez, Alberto Marcos
Tóth, G.
Gombosi, T. I.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Solar Wind
Mhd
Sun: Corona
Sun: Waves
Interplanetary Medium
Methods: Numerical
topic Solar Wind
Mhd
Sun: Corona
Sun: Waves
Interplanetary Medium
Methods: Numerical
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We have developed a new three-dimensional magnetohydrodynamic (MHD) solar wind model coupled to the Space Weather Modeling Framework (SWMF), that solves for the different electron and proton temperatures. The collisions between the electrons and protons are taken into account as well as the anisotropic thermal heat conduction of the electrons. The solar wind is assumed to be accelerated by the Alfv en waves. In this paper, we do not consider the heating of closed magnetic loops and helmet streamers, but do address the heating of the protons by the Kolmogorov dissipation of the Alfv n waves in open field line regions. The inner boundary conditions for this solar wind model are obtained from observations and an empirical model. The Wang-Sheeley-Arge model is used to determine the Alfv n wave energy density at the inner boundary. The electron density and temperature at the inner boundary are obtained from the differential emission measure tomography applied to the extreme ultraviolet images of the STEREO A and B spacecraft. This new solar wind model is validated for solar minimum Carrington rotation 2077 (November 20 through December 17, 2008). Due to the very low activity during this rotation, this time period is suitable for comparing the simulated Corotating Interaction Regions (CIRs) with in-situ ACE/WIND data. Although we do not capture all magnetohydrodynamic variables perfectly, we do find that the time of occurance and the density of CIRs are better predicted than by our previous semi-empirical wind model in the SWMF that was based on a spatially reduced adiabatic index to account for the plasma heating.
Fil: van der Holst, B.. University of Michigan; Estados Unidos
Fil: Manchester IV, W. B.. University of Michigan; Estados Unidos
Fil: Frazin, R. A.. University of Michigan; Estados Unidos
Fil: Vasquez, Alberto Marcos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Tóth, G.. University of Michigan; Estados Unidos
Fil: Gombosi, T. I.. University of Michigan; Estados Unidos
description We have developed a new three-dimensional magnetohydrodynamic (MHD) solar wind model coupled to the Space Weather Modeling Framework (SWMF), that solves for the different electron and proton temperatures. The collisions between the electrons and protons are taken into account as well as the anisotropic thermal heat conduction of the electrons. The solar wind is assumed to be accelerated by the Alfv en waves. In this paper, we do not consider the heating of closed magnetic loops and helmet streamers, but do address the heating of the protons by the Kolmogorov dissipation of the Alfv n waves in open field line regions. The inner boundary conditions for this solar wind model are obtained from observations and an empirical model. The Wang-Sheeley-Arge model is used to determine the Alfv n wave energy density at the inner boundary. The electron density and temperature at the inner boundary are obtained from the differential emission measure tomography applied to the extreme ultraviolet images of the STEREO A and B spacecraft. This new solar wind model is validated for solar minimum Carrington rotation 2077 (November 20 through December 17, 2008). Due to the very low activity during this rotation, this time period is suitable for comparing the simulated Corotating Interaction Regions (CIRs) with in-situ ACE/WIND data. Although we do not capture all magnetohydrodynamic variables perfectly, we do find that the time of occurance and the density of CIRs are better predicted than by our previous semi-empirical wind model in the SWMF that was based on a spatially reduced adiabatic index to account for the plasma heating.
publishDate 2010
dc.date.none.fl_str_mv 2010-12-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20160
van der Holst, B.; Manchester IV, W. B.; Frazin, R. A.; Vasquez, Alberto Marcos; Tóth, G.; et al.; A data-driven, two-temperature solar model with Alfven waves; IOP Publishing; Astrophysical Journal; 725; 1; 10-12-2010; 1373-1383
0004-637X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20160
identifier_str_mv van der Holst, B.; Manchester IV, W. B.; Frazin, R. A.; Vasquez, Alberto Marcos; Tóth, G.; et al.; A data-driven, two-temperature solar model with Alfven waves; IOP Publishing; Astrophysical Journal; 725; 1; 10-12-2010; 1373-1383
0004-637X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/725/1/1373
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0004-637X/725/1/1373/meta
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614213129994240
score 13.070432