Towards subject-centered co-adaptive brain–computer interfaces based on backward optimal transport
- Autores
- Peterson, Victoria; Spagnolo, Valeria; Galván, Catalina María; Nieto, Nicolás; Spies, Ruben Daniel; Milone, Diego Humberto
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Objective. Controlling a motor imagery brain-computer interface (MI-BCI) can be challenging, requiring several sessions of practice. Electroencephalography (EEG)-based BCIs are particularly affected by cross-session variability. In this scenario, it is crucial to implement co-adaptive systems, where the machine adapts the decoding algorithm while the user learns how to control the BCI. To support the user learning process, it is essential to measure and provide real-time feedback on self-modulation skills. This study aims to develop a method for online assessment of MI modulation capability to build co-adaptive BCIs that improve both user performance and system accuracy. Approach. Backward optimal transport for domain adaptation allows across-session MI-BCI usage without classifier retraining. Using the cued label to guide the adaptation, a supportive backward adaptation (SBA) method is defined. The required model effort to perform a trial adaptation is proposed as an online metric of MI modulation skills. We conducted experiments on both real and simulated data to demonstrate that this metric effectively informs about the the discriminability and stability of the EEG patterns related to the MI task. The proposed metric is validated by means of Riemannian distinctiveness metrics. Main Results. Our findings show that the associated effort when applying SBA provides a meaningful way of evaluating EEG patterns discriminability, being significantly correlated with Riemannian distinctiveness metrics. Significance. This study introduces a novel framework for co-adaptive BCI learning that performs data adaptation while assessing the MI-BCI skills of the user. The proposed SBA approach can enhance BCI performance by facilitating session-to-session adaptation and empowering users with valuable feedback based on their current MI modulation strategy. This framework represents a significant advancement in developing user-centered, co-adaptive MI-BCIs that effectively support and enhance user capabilities.
Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Spagnolo, Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Galván, Catalina María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Nieto, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina - Materia
-
Domain adaptation
optimal transport
user-centered BCI
co-adaptive BCI - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/275166
Ver los metadatos del registro completo
| id |
CONICETDig_a20ad637e621f58a28d5e06248ed4f24 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/275166 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Towards subject-centered co-adaptive brain–computer interfaces based on backward optimal transportPeterson, VictoriaSpagnolo, ValeriaGalván, Catalina MaríaNieto, NicolásSpies, Ruben DanielMilone, Diego HumbertoDomain adaptationoptimal transportuser-centered BCIco-adaptive BCIhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Objective. Controlling a motor imagery brain-computer interface (MI-BCI) can be challenging, requiring several sessions of practice. Electroencephalography (EEG)-based BCIs are particularly affected by cross-session variability. In this scenario, it is crucial to implement co-adaptive systems, where the machine adapts the decoding algorithm while the user learns how to control the BCI. To support the user learning process, it is essential to measure and provide real-time feedback on self-modulation skills. This study aims to develop a method for online assessment of MI modulation capability to build co-adaptive BCIs that improve both user performance and system accuracy. Approach. Backward optimal transport for domain adaptation allows across-session MI-BCI usage without classifier retraining. Using the cued label to guide the adaptation, a supportive backward adaptation (SBA) method is defined. The required model effort to perform a trial adaptation is proposed as an online metric of MI modulation skills. We conducted experiments on both real and simulated data to demonstrate that this metric effectively informs about the the discriminability and stability of the EEG patterns related to the MI task. The proposed metric is validated by means of Riemannian distinctiveness metrics. Main Results. Our findings show that the associated effort when applying SBA provides a meaningful way of evaluating EEG patterns discriminability, being significantly correlated with Riemannian distinctiveness metrics. Significance. This study introduces a novel framework for co-adaptive BCI learning that performs data adaptation while assessing the MI-BCI skills of the user. The proposed SBA approach can enhance BCI performance by facilitating session-to-session adaptation and empowering users with valuable feedback based on their current MI modulation strategy. This framework represents a significant advancement in developing user-centered, co-adaptive MI-BCIs that effectively support and enhance user capabilities.Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Spagnolo, Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Galván, Catalina María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Nieto, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaIOP Publishing2025-05info:eu-repo/date/embargoEnd/2025-12-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275166Peterson, Victoria; Spagnolo, Valeria; Galván, Catalina María; Nieto, Nicolás; Spies, Ruben Daniel; et al.; Towards subject-centered co-adaptive brain–computer interfaces based on backward optimal transport; IOP Publishing; Journal of Neural Engineering; 22; 4; 5-2025; 1-291741-2560CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1741-2552/addb7ainfo:eu-repo/semantics/altIdentifier/doi/10.1088/1741-2552/addb7ainfo:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:51:53Zoai:ri.conicet.gov.ar:11336/275166instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:51:53.254CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Towards subject-centered co-adaptive brain–computer interfaces based on backward optimal transport |
| title |
Towards subject-centered co-adaptive brain–computer interfaces based on backward optimal transport |
| spellingShingle |
Towards subject-centered co-adaptive brain–computer interfaces based on backward optimal transport Peterson, Victoria Domain adaptation optimal transport user-centered BCI co-adaptive BCI |
| title_short |
Towards subject-centered co-adaptive brain–computer interfaces based on backward optimal transport |
| title_full |
Towards subject-centered co-adaptive brain–computer interfaces based on backward optimal transport |
| title_fullStr |
Towards subject-centered co-adaptive brain–computer interfaces based on backward optimal transport |
| title_full_unstemmed |
Towards subject-centered co-adaptive brain–computer interfaces based on backward optimal transport |
| title_sort |
Towards subject-centered co-adaptive brain–computer interfaces based on backward optimal transport |
| dc.creator.none.fl_str_mv |
Peterson, Victoria Spagnolo, Valeria Galván, Catalina María Nieto, Nicolás Spies, Ruben Daniel Milone, Diego Humberto |
| author |
Peterson, Victoria |
| author_facet |
Peterson, Victoria Spagnolo, Valeria Galván, Catalina María Nieto, Nicolás Spies, Ruben Daniel Milone, Diego Humberto |
| author_role |
author |
| author2 |
Spagnolo, Valeria Galván, Catalina María Nieto, Nicolás Spies, Ruben Daniel Milone, Diego Humberto |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
Domain adaptation optimal transport user-centered BCI co-adaptive BCI |
| topic |
Domain adaptation optimal transport user-centered BCI co-adaptive BCI |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Objective. Controlling a motor imagery brain-computer interface (MI-BCI) can be challenging, requiring several sessions of practice. Electroencephalography (EEG)-based BCIs are particularly affected by cross-session variability. In this scenario, it is crucial to implement co-adaptive systems, where the machine adapts the decoding algorithm while the user learns how to control the BCI. To support the user learning process, it is essential to measure and provide real-time feedback on self-modulation skills. This study aims to develop a method for online assessment of MI modulation capability to build co-adaptive BCIs that improve both user performance and system accuracy. Approach. Backward optimal transport for domain adaptation allows across-session MI-BCI usage without classifier retraining. Using the cued label to guide the adaptation, a supportive backward adaptation (SBA) method is defined. The required model effort to perform a trial adaptation is proposed as an online metric of MI modulation skills. We conducted experiments on both real and simulated data to demonstrate that this metric effectively informs about the the discriminability and stability of the EEG patterns related to the MI task. The proposed metric is validated by means of Riemannian distinctiveness metrics. Main Results. Our findings show that the associated effort when applying SBA provides a meaningful way of evaluating EEG patterns discriminability, being significantly correlated with Riemannian distinctiveness metrics. Significance. This study introduces a novel framework for co-adaptive BCI learning that performs data adaptation while assessing the MI-BCI skills of the user. The proposed SBA approach can enhance BCI performance by facilitating session-to-session adaptation and empowering users with valuable feedback based on their current MI modulation strategy. This framework represents a significant advancement in developing user-centered, co-adaptive MI-BCIs that effectively support and enhance user capabilities. Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Spagnolo, Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Galván, Catalina María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Nieto, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina |
| description |
Objective. Controlling a motor imagery brain-computer interface (MI-BCI) can be challenging, requiring several sessions of practice. Electroencephalography (EEG)-based BCIs are particularly affected by cross-session variability. In this scenario, it is crucial to implement co-adaptive systems, where the machine adapts the decoding algorithm while the user learns how to control the BCI. To support the user learning process, it is essential to measure and provide real-time feedback on self-modulation skills. This study aims to develop a method for online assessment of MI modulation capability to build co-adaptive BCIs that improve both user performance and system accuracy. Approach. Backward optimal transport for domain adaptation allows across-session MI-BCI usage without classifier retraining. Using the cued label to guide the adaptation, a supportive backward adaptation (SBA) method is defined. The required model effort to perform a trial adaptation is proposed as an online metric of MI modulation skills. We conducted experiments on both real and simulated data to demonstrate that this metric effectively informs about the the discriminability and stability of the EEG patterns related to the MI task. The proposed metric is validated by means of Riemannian distinctiveness metrics. Main Results. Our findings show that the associated effort when applying SBA provides a meaningful way of evaluating EEG patterns discriminability, being significantly correlated with Riemannian distinctiveness metrics. Significance. This study introduces a novel framework for co-adaptive BCI learning that performs data adaptation while assessing the MI-BCI skills of the user. The proposed SBA approach can enhance BCI performance by facilitating session-to-session adaptation and empowering users with valuable feedback based on their current MI modulation strategy. This framework represents a significant advancement in developing user-centered, co-adaptive MI-BCIs that effectively support and enhance user capabilities. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-05 info:eu-repo/date/embargoEnd/2025-12-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/275166 Peterson, Victoria; Spagnolo, Valeria; Galván, Catalina María; Nieto, Nicolás; Spies, Ruben Daniel; et al.; Towards subject-centered co-adaptive brain–computer interfaces based on backward optimal transport; IOP Publishing; Journal of Neural Engineering; 22; 4; 5-2025; 1-29 1741-2560 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/275166 |
| identifier_str_mv |
Peterson, Victoria; Spagnolo, Valeria; Galván, Catalina María; Nieto, Nicolás; Spies, Ruben Daniel; et al.; Towards subject-centered co-adaptive brain–computer interfaces based on backward optimal transport; IOP Publishing; Journal of Neural Engineering; 22; 4; 5-2025; 1-29 1741-2560 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1741-2552/addb7a info:eu-repo/semantics/altIdentifier/doi/10.1088/1741-2552/addb7a |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
embargoedAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
IOP Publishing |
| publisher.none.fl_str_mv |
IOP Publishing |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335412214759424 |
| score |
12.952241 |