Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles

Autores
Ullah, Sajjad; Ferreira Neto, Elias P.; Pasa, André A.; Alcântara, Carlos C.J.; Acuña, José J.S.; Aldabe, Sara Alfonsina; Martinez Ricci, Maria Luz; Landers, Richard; Fermino, Taina Zampieri; Rodrigues Filho, Ubirajara P.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
SiO2@TiO2 core@shell nanoparticles (CSNs) have recently attracted great attention due to their unique and tunable optical and photocatalytic properties and higher dispersion of the supported TiO2. Thus, development of facile, reproducible and effective methods for the synthesis of SiO2@TiO2 CSNs and a fundamental understanding of their improved properties, derived from combination of different core and shell materials, is of great importance. Here we report a very facile and reproducible method for the synthesis of CSNs with a control of particle morphology, crystallinity and phase selectivity, and provide important insight into the effect of core@shell configuration on the photocatalytic and optical properties of SiO2@TiO2 CSNs. For this purpose, synthesis of highly dispersed anatase nanocrystals (~5nm) of high surface area was carried out by supporting these nanocrystals on silica sub-micron spheres in the form of a porous shell of controlled thickness (10-30nm). The amorphous TiO2 shell was crystallized into anatase using a low temperature (105°C) hydrothermal treatment. The resulting CSNs were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, x-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, zeta-potential measurements, BET surface area and electron paramagnetic resonance measurements. Both experimental data and theoretical simulations showed that due to the size of the complete particle (SiO2@TiO2), the general optical response of the system is regulated by Rayleigh scattering, exhibiting a red-shift of the extinction spectra as shell-thickness increases. The SiO2@TiO2 configuration leads to efficient light harvesting by increasing the optical path inside the core@shell particles. An enhanced photoactivity and good recyclability of SiO2@TiO2 CSNs was demonstrated compared to unsupported TiO2. Together with BET surface area measurements, direct assessment of the density of photocatalytic sites probed by electron paramagnetic resonance measurements was used to provide insight into the enhanced photocatalytic activity of CSNs, which is also understood as a consequence of Rayleigh scattering, relative enhancement of the adsorption of organic molecules on the core@shell photocatalyst surface and increased optical path inside the SiO2@TiO2 particles. All these aspects are directly influenced by the core@shell configuration of SiO2@TiO2 samples.
Fil: Ullah, Sajjad. Universidade de Sao Paulo; Brasil. University of Peshawar; Pakistán
Fil: Ferreira Neto, Elias P.. Universidade de Sao Paulo; Brasil
Fil: Pasa, André A.. Universidade Federal de Santa Catarina; Brasil
Fil: Alcântara, Carlos C.J.. Universidade Federal de Santa Catarina; Brasil
Fil: Acuña, José J.S.. Universidade Federal do ABC; Brasil
Fil: Aldabe, Sara Alfonsina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Martinez Ricci, Maria Luz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Landers, Richard. Universidade Estadual de Campinas; Brasil
Fil: Fermino, Taina Zampieri. Universidade de Sao Paulo; Brasil
Fil: Rodrigues Filho, Ubirajara P.. Universidade de Sao Paulo; Brasil
Materia
Core@Shell
Optical Properties
Photocatalysis
Quantum Size Effect
Rayleigh Scattering
Sio≪Inf≫2≪/Inf≫@Tio≪Inf≫2≪/Inf≫
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/58882

id CONICETDig_a1dfd36f5b813264f65ec85ff7414e94
oai_identifier_str oai:ri.conicet.gov.ar:11336/58882
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticlesUllah, SajjadFerreira Neto, Elias P.Pasa, André A.Alcântara, Carlos C.J.Acuña, José J.S.Aldabe, Sara AlfonsinaMartinez Ricci, Maria LuzLanders, RichardFermino, Taina ZampieriRodrigues Filho, Ubirajara P.Core@ShellOptical PropertiesPhotocatalysisQuantum Size EffectRayleigh ScatteringSio≪Inf≫2≪/Inf≫@Tio≪Inf≫2≪/Inf≫https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1SiO2@TiO2 core@shell nanoparticles (CSNs) have recently attracted great attention due to their unique and tunable optical and photocatalytic properties and higher dispersion of the supported TiO2. Thus, development of facile, reproducible and effective methods for the synthesis of SiO2@TiO2 CSNs and a fundamental understanding of their improved properties, derived from combination of different core and shell materials, is of great importance. Here we report a very facile and reproducible method for the synthesis of CSNs with a control of particle morphology, crystallinity and phase selectivity, and provide important insight into the effect of core@shell configuration on the photocatalytic and optical properties of SiO2@TiO2 CSNs. For this purpose, synthesis of highly dispersed anatase nanocrystals (~5nm) of high surface area was carried out by supporting these nanocrystals on silica sub-micron spheres in the form of a porous shell of controlled thickness (10-30nm). The amorphous TiO2 shell was crystallized into anatase using a low temperature (105°C) hydrothermal treatment. The resulting CSNs were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, x-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, zeta-potential measurements, BET surface area and electron paramagnetic resonance measurements. Both experimental data and theoretical simulations showed that due to the size of the complete particle (SiO2@TiO2), the general optical response of the system is regulated by Rayleigh scattering, exhibiting a red-shift of the extinction spectra as shell-thickness increases. The SiO2@TiO2 configuration leads to efficient light harvesting by increasing the optical path inside the core@shell particles. An enhanced photoactivity and good recyclability of SiO2@TiO2 CSNs was demonstrated compared to unsupported TiO2. Together with BET surface area measurements, direct assessment of the density of photocatalytic sites probed by electron paramagnetic resonance measurements was used to provide insight into the enhanced photocatalytic activity of CSNs, which is also understood as a consequence of Rayleigh scattering, relative enhancement of the adsorption of organic molecules on the core@shell photocatalyst surface and increased optical path inside the SiO2@TiO2 particles. All these aspects are directly influenced by the core@shell configuration of SiO2@TiO2 samples.Fil: Ullah, Sajjad. Universidade de Sao Paulo; Brasil. University of Peshawar; PakistánFil: Ferreira Neto, Elias P.. Universidade de Sao Paulo; BrasilFil: Pasa, André A.. Universidade Federal de Santa Catarina; BrasilFil: Alcântara, Carlos C.J.. Universidade Federal de Santa Catarina; BrasilFil: Acuña, José J.S.. Universidade Federal do ABC; BrasilFil: Aldabe, Sara Alfonsina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Martinez Ricci, Maria Luz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Landers, Richard. Universidade Estadual de Campinas; BrasilFil: Fermino, Taina Zampieri. Universidade de Sao Paulo; BrasilFil: Rodrigues Filho, Ubirajara P.. Universidade de Sao Paulo; BrasilElsevier Science2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58882Ullah, Sajjad; Ferreira Neto, Elias P.; Pasa, André A.; Alcântara, Carlos C.J.; Acuña, José J.S.; et al.; Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles; Elsevier Science; Applied Catalysis B: Environmental; 179; 12-2015; 333-3430926-3373CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.apcatb.2015.05.036info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926337315002817info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:41Zoai:ri.conicet.gov.ar:11336/58882instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:41.882CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles
title Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles
spellingShingle Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles
Ullah, Sajjad
Core@Shell
Optical Properties
Photocatalysis
Quantum Size Effect
Rayleigh Scattering
Sio≪Inf≫2≪/Inf≫@Tio≪Inf≫2≪/Inf≫
title_short Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles
title_full Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles
title_fullStr Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles
title_full_unstemmed Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles
title_sort Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles
dc.creator.none.fl_str_mv Ullah, Sajjad
Ferreira Neto, Elias P.
Pasa, André A.
Alcântara, Carlos C.J.
Acuña, José J.S.
Aldabe, Sara Alfonsina
Martinez Ricci, Maria Luz
Landers, Richard
Fermino, Taina Zampieri
Rodrigues Filho, Ubirajara P.
author Ullah, Sajjad
author_facet Ullah, Sajjad
Ferreira Neto, Elias P.
Pasa, André A.
Alcântara, Carlos C.J.
Acuña, José J.S.
Aldabe, Sara Alfonsina
Martinez Ricci, Maria Luz
Landers, Richard
Fermino, Taina Zampieri
Rodrigues Filho, Ubirajara P.
author_role author
author2 Ferreira Neto, Elias P.
Pasa, André A.
Alcântara, Carlos C.J.
Acuña, José J.S.
Aldabe, Sara Alfonsina
Martinez Ricci, Maria Luz
Landers, Richard
Fermino, Taina Zampieri
Rodrigues Filho, Ubirajara P.
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Core@Shell
Optical Properties
Photocatalysis
Quantum Size Effect
Rayleigh Scattering
Sio≪Inf≫2≪/Inf≫@Tio≪Inf≫2≪/Inf≫
topic Core@Shell
Optical Properties
Photocatalysis
Quantum Size Effect
Rayleigh Scattering
Sio≪Inf≫2≪/Inf≫@Tio≪Inf≫2≪/Inf≫
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv SiO2@TiO2 core@shell nanoparticles (CSNs) have recently attracted great attention due to their unique and tunable optical and photocatalytic properties and higher dispersion of the supported TiO2. Thus, development of facile, reproducible and effective methods for the synthesis of SiO2@TiO2 CSNs and a fundamental understanding of their improved properties, derived from combination of different core and shell materials, is of great importance. Here we report a very facile and reproducible method for the synthesis of CSNs with a control of particle morphology, crystallinity and phase selectivity, and provide important insight into the effect of core@shell configuration on the photocatalytic and optical properties of SiO2@TiO2 CSNs. For this purpose, synthesis of highly dispersed anatase nanocrystals (~5nm) of high surface area was carried out by supporting these nanocrystals on silica sub-micron spheres in the form of a porous shell of controlled thickness (10-30nm). The amorphous TiO2 shell was crystallized into anatase using a low temperature (105°C) hydrothermal treatment. The resulting CSNs were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, x-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, zeta-potential measurements, BET surface area and electron paramagnetic resonance measurements. Both experimental data and theoretical simulations showed that due to the size of the complete particle (SiO2@TiO2), the general optical response of the system is regulated by Rayleigh scattering, exhibiting a red-shift of the extinction spectra as shell-thickness increases. The SiO2@TiO2 configuration leads to efficient light harvesting by increasing the optical path inside the core@shell particles. An enhanced photoactivity and good recyclability of SiO2@TiO2 CSNs was demonstrated compared to unsupported TiO2. Together with BET surface area measurements, direct assessment of the density of photocatalytic sites probed by electron paramagnetic resonance measurements was used to provide insight into the enhanced photocatalytic activity of CSNs, which is also understood as a consequence of Rayleigh scattering, relative enhancement of the adsorption of organic molecules on the core@shell photocatalyst surface and increased optical path inside the SiO2@TiO2 particles. All these aspects are directly influenced by the core@shell configuration of SiO2@TiO2 samples.
Fil: Ullah, Sajjad. Universidade de Sao Paulo; Brasil. University of Peshawar; Pakistán
Fil: Ferreira Neto, Elias P.. Universidade de Sao Paulo; Brasil
Fil: Pasa, André A.. Universidade Federal de Santa Catarina; Brasil
Fil: Alcântara, Carlos C.J.. Universidade Federal de Santa Catarina; Brasil
Fil: Acuña, José J.S.. Universidade Federal do ABC; Brasil
Fil: Aldabe, Sara Alfonsina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Martinez Ricci, Maria Luz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Landers, Richard. Universidade Estadual de Campinas; Brasil
Fil: Fermino, Taina Zampieri. Universidade de Sao Paulo; Brasil
Fil: Rodrigues Filho, Ubirajara P.. Universidade de Sao Paulo; Brasil
description SiO2@TiO2 core@shell nanoparticles (CSNs) have recently attracted great attention due to their unique and tunable optical and photocatalytic properties and higher dispersion of the supported TiO2. Thus, development of facile, reproducible and effective methods for the synthesis of SiO2@TiO2 CSNs and a fundamental understanding of their improved properties, derived from combination of different core and shell materials, is of great importance. Here we report a very facile and reproducible method for the synthesis of CSNs with a control of particle morphology, crystallinity and phase selectivity, and provide important insight into the effect of core@shell configuration on the photocatalytic and optical properties of SiO2@TiO2 CSNs. For this purpose, synthesis of highly dispersed anatase nanocrystals (~5nm) of high surface area was carried out by supporting these nanocrystals on silica sub-micron spheres in the form of a porous shell of controlled thickness (10-30nm). The amorphous TiO2 shell was crystallized into anatase using a low temperature (105°C) hydrothermal treatment. The resulting CSNs were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, x-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, zeta-potential measurements, BET surface area and electron paramagnetic resonance measurements. Both experimental data and theoretical simulations showed that due to the size of the complete particle (SiO2@TiO2), the general optical response of the system is regulated by Rayleigh scattering, exhibiting a red-shift of the extinction spectra as shell-thickness increases. The SiO2@TiO2 configuration leads to efficient light harvesting by increasing the optical path inside the core@shell particles. An enhanced photoactivity and good recyclability of SiO2@TiO2 CSNs was demonstrated compared to unsupported TiO2. Together with BET surface area measurements, direct assessment of the density of photocatalytic sites probed by electron paramagnetic resonance measurements was used to provide insight into the enhanced photocatalytic activity of CSNs, which is also understood as a consequence of Rayleigh scattering, relative enhancement of the adsorption of organic molecules on the core@shell photocatalyst surface and increased optical path inside the SiO2@TiO2 particles. All these aspects are directly influenced by the core@shell configuration of SiO2@TiO2 samples.
publishDate 2015
dc.date.none.fl_str_mv 2015-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/58882
Ullah, Sajjad; Ferreira Neto, Elias P.; Pasa, André A.; Alcântara, Carlos C.J.; Acuña, José J.S.; et al.; Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles; Elsevier Science; Applied Catalysis B: Environmental; 179; 12-2015; 333-343
0926-3373
CONICET Digital
CONICET
url http://hdl.handle.net/11336/58882
identifier_str_mv Ullah, Sajjad; Ferreira Neto, Elias P.; Pasa, André A.; Alcântara, Carlos C.J.; Acuña, José J.S.; et al.; Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles; Elsevier Science; Applied Catalysis B: Environmental; 179; 12-2015; 333-343
0926-3373
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apcatb.2015.05.036
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926337315002817
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270091547246592
score 13.13397