Strain injection techniques in dynamic fracture modeling

Autores
Lloberas Valls, Oriol; Huespe, Alfredo Edmundo; Oliver, J.; Dias, I.F.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A computationally affordable modeling of dynamic fracture phenomena is performed in this study by using strain injection techniques and Finite Elements with Embedded strong discontinuities (E-FEM). In the present research, classical strain localization and strong discontinuity approaches are considered by injecting discontinuous strain and displacement modes in the finite element formulation without an increase of the total number of degrees of freedom. Following the Continuum Strong Discontinuity Approach (CSDA), stress–strain constitutive laws can be employed in the context of fracture phenomena and, therefore, the methodology remains applicable to a wide number of continuum mechanics models. The position and orientation of the displacement discontinuity is obtained through the solution of a crack propagation problem, i.e. the crack path field, based on the distribution of localized strains. The combination of the above mentioned approaches is envisaged to avoid stress-locking and directional mesh bias phenomena. Dynamic simulations are performed increasing the loading rate up to the appearance of crack branching, and the variation in terms of failure modes is investigated as well as the influence of the strain injection together with the crack path field algorithm. Objectivity of the presented methodology with respect to the spatial and temporal discretization is analyzed in terms of the dissipated energy during the fracture process. The dissipation at the onset of branching is studied for different loading rate conditions and is linked to the experimental maximum velocity observed before branching takes place.
Fil: Lloberas Valls, Oriol. Universidad Politecnica de Catalunya; España. Centre Internacional de Metodes Numerics en Enginyeria; España
Fil: Huespe, Alfredo Edmundo. Centre Internacional de Metodes Numerics en Enginyeria; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Oliver, J.. Centre Internacional de Metodes Numerics en Enginyeria; España. Universidad Politecnica de Catalunya; España
Fil: Dias, I.F.. Laboratório Nacional de Engenharia Civil; Portugal
Materia
CRACK PATH FIELD
FRACTURE DYNAMICS
STRAIN INJECTION TECHNIQUES
STRONG DISCONTINUITY APPROACH
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/38241

id CONICETDig_a0b2cc4acbc43140bc7dfd8ece277ae4
oai_identifier_str oai:ri.conicet.gov.ar:11336/38241
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Strain injection techniques in dynamic fracture modelingLloberas Valls, OriolHuespe, Alfredo EdmundoOliver, J.Dias, I.F.CRACK PATH FIELDFRACTURE DYNAMICSSTRAIN INJECTION TECHNIQUESSTRONG DISCONTINUITY APPROACHhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2A computationally affordable modeling of dynamic fracture phenomena is performed in this study by using strain injection techniques and Finite Elements with Embedded strong discontinuities (E-FEM). In the present research, classical strain localization and strong discontinuity approaches are considered by injecting discontinuous strain and displacement modes in the finite element formulation without an increase of the total number of degrees of freedom. Following the Continuum Strong Discontinuity Approach (CSDA), stress–strain constitutive laws can be employed in the context of fracture phenomena and, therefore, the methodology remains applicable to a wide number of continuum mechanics models. The position and orientation of the displacement discontinuity is obtained through the solution of a crack propagation problem, i.e. the crack path field, based on the distribution of localized strains. The combination of the above mentioned approaches is envisaged to avoid stress-locking and directional mesh bias phenomena. Dynamic simulations are performed increasing the loading rate up to the appearance of crack branching, and the variation in terms of failure modes is investigated as well as the influence of the strain injection together with the crack path field algorithm. Objectivity of the presented methodology with respect to the spatial and temporal discretization is analyzed in terms of the dissipated energy during the fracture process. The dissipation at the onset of branching is studied for different loading rate conditions and is linked to the experimental maximum velocity observed before branching takes place.Fil: Lloberas Valls, Oriol. Universidad Politecnica de Catalunya; España. Centre Internacional de Metodes Numerics en Enginyeria; EspañaFil: Huespe, Alfredo Edmundo. Centre Internacional de Metodes Numerics en Enginyeria; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Oliver, J.. Centre Internacional de Metodes Numerics en Enginyeria; España. Universidad Politecnica de Catalunya; EspañaFil: Dias, I.F.. Laboratório Nacional de Engenharia Civil; PortugalElsevier Science Sa2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38241Lloberas Valls, Oriol; Huespe, Alfredo Edmundo; Oliver, J.; Dias, I.F.; Strain injection techniques in dynamic fracture modeling; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 308; 8-2016; 499-5340045-7825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2016.05.023info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0045782516304248info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:56Zoai:ri.conicet.gov.ar:11336/38241instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:57.76CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Strain injection techniques in dynamic fracture modeling
title Strain injection techniques in dynamic fracture modeling
spellingShingle Strain injection techniques in dynamic fracture modeling
Lloberas Valls, Oriol
CRACK PATH FIELD
FRACTURE DYNAMICS
STRAIN INJECTION TECHNIQUES
STRONG DISCONTINUITY APPROACH
title_short Strain injection techniques in dynamic fracture modeling
title_full Strain injection techniques in dynamic fracture modeling
title_fullStr Strain injection techniques in dynamic fracture modeling
title_full_unstemmed Strain injection techniques in dynamic fracture modeling
title_sort Strain injection techniques in dynamic fracture modeling
dc.creator.none.fl_str_mv Lloberas Valls, Oriol
Huespe, Alfredo Edmundo
Oliver, J.
Dias, I.F.
author Lloberas Valls, Oriol
author_facet Lloberas Valls, Oriol
Huespe, Alfredo Edmundo
Oliver, J.
Dias, I.F.
author_role author
author2 Huespe, Alfredo Edmundo
Oliver, J.
Dias, I.F.
author2_role author
author
author
dc.subject.none.fl_str_mv CRACK PATH FIELD
FRACTURE DYNAMICS
STRAIN INJECTION TECHNIQUES
STRONG DISCONTINUITY APPROACH
topic CRACK PATH FIELD
FRACTURE DYNAMICS
STRAIN INJECTION TECHNIQUES
STRONG DISCONTINUITY APPROACH
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A computationally affordable modeling of dynamic fracture phenomena is performed in this study by using strain injection techniques and Finite Elements with Embedded strong discontinuities (E-FEM). In the present research, classical strain localization and strong discontinuity approaches are considered by injecting discontinuous strain and displacement modes in the finite element formulation without an increase of the total number of degrees of freedom. Following the Continuum Strong Discontinuity Approach (CSDA), stress–strain constitutive laws can be employed in the context of fracture phenomena and, therefore, the methodology remains applicable to a wide number of continuum mechanics models. The position and orientation of the displacement discontinuity is obtained through the solution of a crack propagation problem, i.e. the crack path field, based on the distribution of localized strains. The combination of the above mentioned approaches is envisaged to avoid stress-locking and directional mesh bias phenomena. Dynamic simulations are performed increasing the loading rate up to the appearance of crack branching, and the variation in terms of failure modes is investigated as well as the influence of the strain injection together with the crack path field algorithm. Objectivity of the presented methodology with respect to the spatial and temporal discretization is analyzed in terms of the dissipated energy during the fracture process. The dissipation at the onset of branching is studied for different loading rate conditions and is linked to the experimental maximum velocity observed before branching takes place.
Fil: Lloberas Valls, Oriol. Universidad Politecnica de Catalunya; España. Centre Internacional de Metodes Numerics en Enginyeria; España
Fil: Huespe, Alfredo Edmundo. Centre Internacional de Metodes Numerics en Enginyeria; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Oliver, J.. Centre Internacional de Metodes Numerics en Enginyeria; España. Universidad Politecnica de Catalunya; España
Fil: Dias, I.F.. Laboratório Nacional de Engenharia Civil; Portugal
description A computationally affordable modeling of dynamic fracture phenomena is performed in this study by using strain injection techniques and Finite Elements with Embedded strong discontinuities (E-FEM). In the present research, classical strain localization and strong discontinuity approaches are considered by injecting discontinuous strain and displacement modes in the finite element formulation without an increase of the total number of degrees of freedom. Following the Continuum Strong Discontinuity Approach (CSDA), stress–strain constitutive laws can be employed in the context of fracture phenomena and, therefore, the methodology remains applicable to a wide number of continuum mechanics models. The position and orientation of the displacement discontinuity is obtained through the solution of a crack propagation problem, i.e. the crack path field, based on the distribution of localized strains. The combination of the above mentioned approaches is envisaged to avoid stress-locking and directional mesh bias phenomena. Dynamic simulations are performed increasing the loading rate up to the appearance of crack branching, and the variation in terms of failure modes is investigated as well as the influence of the strain injection together with the crack path field algorithm. Objectivity of the presented methodology with respect to the spatial and temporal discretization is analyzed in terms of the dissipated energy during the fracture process. The dissipation at the onset of branching is studied for different loading rate conditions and is linked to the experimental maximum velocity observed before branching takes place.
publishDate 2016
dc.date.none.fl_str_mv 2016-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/38241
Lloberas Valls, Oriol; Huespe, Alfredo Edmundo; Oliver, J.; Dias, I.F.; Strain injection techniques in dynamic fracture modeling; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 308; 8-2016; 499-534
0045-7825
CONICET Digital
CONICET
url http://hdl.handle.net/11336/38241
identifier_str_mv Lloberas Valls, Oriol; Huespe, Alfredo Edmundo; Oliver, J.; Dias, I.F.; Strain injection techniques in dynamic fracture modeling; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 308; 8-2016; 499-534
0045-7825
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2016.05.023
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0045782516304248
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Sa
publisher.none.fl_str_mv Elsevier Science Sa
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269313742929920
score 13.13397