Using photographic records to quantify accuracy of bird identifications in citizen science data
- Autores
- Gorleri, Fabricio Carlos; Jordan, Emilio Ariel; Roesler, Carlos Ignacio; Monteleone, Diego; Areta, Juan Ignacio
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Citizen science data are increasingly used for biodiversity monitoring. However, concerns are often raised over the accuracy of species identifications in citizen science databases, as data are collected mostly by non-professionals. Misidentifications can simultaneously generate two error types: false positives (erroneous reports of a species) and false negatives (lack of reports of the misidentified species). Large-scale assessments of identification errors should provide insights into the strengths and weaknesses of citizen science data. Here we show that citizen science photographic data for birds are trustworthy overall, although problems arise in hard-to-identify bird groups. We reviewed over 104 000 images of 377 passerine species from the southern Neotropics (Argentina) stored in eBird – a large citizen science platform – and quantified erroneous reports to calculate precision and recall metrics as measures for data accuracy. Precision increases with fewer false positives and recall increases with fewer false negatives; hence, high values of precision and recall will mirror a higher data accuracy. We found that 97% of the photos of all species were correctly identified. Most species (77%; n = 291) showed high accuracy in their identifications (precision and recall > 95%), with 122 species showing no errors. A few hard-to-identify species (10%; n = 40) showed low levels of data quality (63–90% precision or recall). Similarly, few species (12%; n = 46) exhibited intermediate precision or recall scores (90–95%). Further, we uncovered the existence of a complex network of cross-identifications composed of 272 species, with a predominance of tyrant flycatchers and ovenbirds, reflecting the strong traffic of errors that occurs within these families. To our knowledge, our study provides the first large-scale quantification of identification errors in photos submitted by citizen science contributors. We underscore the relevance of performing such assessments to understand how identification errors are distributed across a database before analysing data, and provide tools for citizen science stakeholders to direct more specific efforts toward species that need an improvement in data quality.
Fil: Gorleri, Fabricio Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina
Fil: Jordan, Emilio Ariel. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; Argentina
Fil: Roesler, Carlos Ignacio. Asociación Ornitológica del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Monteleone, Diego. Asociación Ornitológica del Plata; Argentina
Fil: Areta, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina - Materia
-
ARGENTINA
EBIRD
FALSE NEGATIVES
FALSE POSITIVES
MISIDENTIFICATIONS
NEOTROPICS
NETWORK ANALYSIS
PASSERINES
PRECISION
RECALL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/205123
Ver los metadatos del registro completo
id |
CONICETDig_a0846c8661d1f6274f542326f6e85fda |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/205123 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Using photographic records to quantify accuracy of bird identifications in citizen science dataGorleri, Fabricio CarlosJordan, Emilio ArielRoesler, Carlos IgnacioMonteleone, DiegoAreta, Juan IgnacioARGENTINAEBIRDFALSE NEGATIVESFALSE POSITIVESMISIDENTIFICATIONSNEOTROPICSNETWORK ANALYSISPASSERINESPRECISIONRECALLhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Citizen science data are increasingly used for biodiversity monitoring. However, concerns are often raised over the accuracy of species identifications in citizen science databases, as data are collected mostly by non-professionals. Misidentifications can simultaneously generate two error types: false positives (erroneous reports of a species) and false negatives (lack of reports of the misidentified species). Large-scale assessments of identification errors should provide insights into the strengths and weaknesses of citizen science data. Here we show that citizen science photographic data for birds are trustworthy overall, although problems arise in hard-to-identify bird groups. We reviewed over 104 000 images of 377 passerine species from the southern Neotropics (Argentina) stored in eBird – a large citizen science platform – and quantified erroneous reports to calculate precision and recall metrics as measures for data accuracy. Precision increases with fewer false positives and recall increases with fewer false negatives; hence, high values of precision and recall will mirror a higher data accuracy. We found that 97% of the photos of all species were correctly identified. Most species (77%; n = 291) showed high accuracy in their identifications (precision and recall > 95%), with 122 species showing no errors. A few hard-to-identify species (10%; n = 40) showed low levels of data quality (63–90% precision or recall). Similarly, few species (12%; n = 46) exhibited intermediate precision or recall scores (90–95%). Further, we uncovered the existence of a complex network of cross-identifications composed of 272 species, with a predominance of tyrant flycatchers and ovenbirds, reflecting the strong traffic of errors that occurs within these families. To our knowledge, our study provides the first large-scale quantification of identification errors in photos submitted by citizen science contributors. We underscore the relevance of performing such assessments to understand how identification errors are distributed across a database before analysing data, and provide tools for citizen science stakeholders to direct more specific efforts toward species that need an improvement in data quality.Fil: Gorleri, Fabricio Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Jordan, Emilio Ariel. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; ArgentinaFil: Roesler, Carlos Ignacio. Asociación Ornitológica del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Monteleone, Diego. Asociación Ornitológica del Plata; ArgentinaFil: Areta, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaWiley Blackwell Publishing, Inc2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/205123Gorleri, Fabricio Carlos; Jordan, Emilio Ariel; Roesler, Carlos Ignacio; Monteleone, Diego; Areta, Juan Ignacio; Using photographic records to quantify accuracy of bird identifications in citizen science data; Wiley Blackwell Publishing, Inc; Ibis; 165; 2; 4-2023; 458-4710019-1019CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/ibi.13137info:eu-repo/semantics/altIdentifier/doi/10.1111/ibi.13137info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:56:57Zoai:ri.conicet.gov.ar:11336/205123instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:56:58.295CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Using photographic records to quantify accuracy of bird identifications in citizen science data |
title |
Using photographic records to quantify accuracy of bird identifications in citizen science data |
spellingShingle |
Using photographic records to quantify accuracy of bird identifications in citizen science data Gorleri, Fabricio Carlos ARGENTINA EBIRD FALSE NEGATIVES FALSE POSITIVES MISIDENTIFICATIONS NEOTROPICS NETWORK ANALYSIS PASSERINES PRECISION RECALL |
title_short |
Using photographic records to quantify accuracy of bird identifications in citizen science data |
title_full |
Using photographic records to quantify accuracy of bird identifications in citizen science data |
title_fullStr |
Using photographic records to quantify accuracy of bird identifications in citizen science data |
title_full_unstemmed |
Using photographic records to quantify accuracy of bird identifications in citizen science data |
title_sort |
Using photographic records to quantify accuracy of bird identifications in citizen science data |
dc.creator.none.fl_str_mv |
Gorleri, Fabricio Carlos Jordan, Emilio Ariel Roesler, Carlos Ignacio Monteleone, Diego Areta, Juan Ignacio |
author |
Gorleri, Fabricio Carlos |
author_facet |
Gorleri, Fabricio Carlos Jordan, Emilio Ariel Roesler, Carlos Ignacio Monteleone, Diego Areta, Juan Ignacio |
author_role |
author |
author2 |
Jordan, Emilio Ariel Roesler, Carlos Ignacio Monteleone, Diego Areta, Juan Ignacio |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
ARGENTINA EBIRD FALSE NEGATIVES FALSE POSITIVES MISIDENTIFICATIONS NEOTROPICS NETWORK ANALYSIS PASSERINES PRECISION RECALL |
topic |
ARGENTINA EBIRD FALSE NEGATIVES FALSE POSITIVES MISIDENTIFICATIONS NEOTROPICS NETWORK ANALYSIS PASSERINES PRECISION RECALL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Citizen science data are increasingly used for biodiversity monitoring. However, concerns are often raised over the accuracy of species identifications in citizen science databases, as data are collected mostly by non-professionals. Misidentifications can simultaneously generate two error types: false positives (erroneous reports of a species) and false negatives (lack of reports of the misidentified species). Large-scale assessments of identification errors should provide insights into the strengths and weaknesses of citizen science data. Here we show that citizen science photographic data for birds are trustworthy overall, although problems arise in hard-to-identify bird groups. We reviewed over 104 000 images of 377 passerine species from the southern Neotropics (Argentina) stored in eBird – a large citizen science platform – and quantified erroneous reports to calculate precision and recall metrics as measures for data accuracy. Precision increases with fewer false positives and recall increases with fewer false negatives; hence, high values of precision and recall will mirror a higher data accuracy. We found that 97% of the photos of all species were correctly identified. Most species (77%; n = 291) showed high accuracy in their identifications (precision and recall > 95%), with 122 species showing no errors. A few hard-to-identify species (10%; n = 40) showed low levels of data quality (63–90% precision or recall). Similarly, few species (12%; n = 46) exhibited intermediate precision or recall scores (90–95%). Further, we uncovered the existence of a complex network of cross-identifications composed of 272 species, with a predominance of tyrant flycatchers and ovenbirds, reflecting the strong traffic of errors that occurs within these families. To our knowledge, our study provides the first large-scale quantification of identification errors in photos submitted by citizen science contributors. We underscore the relevance of performing such assessments to understand how identification errors are distributed across a database before analysing data, and provide tools for citizen science stakeholders to direct more specific efforts toward species that need an improvement in data quality. Fil: Gorleri, Fabricio Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina Fil: Jordan, Emilio Ariel. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; Argentina Fil: Roesler, Carlos Ignacio. Asociación Ornitológica del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Monteleone, Diego. Asociación Ornitológica del Plata; Argentina Fil: Areta, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina |
description |
Citizen science data are increasingly used for biodiversity monitoring. However, concerns are often raised over the accuracy of species identifications in citizen science databases, as data are collected mostly by non-professionals. Misidentifications can simultaneously generate two error types: false positives (erroneous reports of a species) and false negatives (lack of reports of the misidentified species). Large-scale assessments of identification errors should provide insights into the strengths and weaknesses of citizen science data. Here we show that citizen science photographic data for birds are trustworthy overall, although problems arise in hard-to-identify bird groups. We reviewed over 104 000 images of 377 passerine species from the southern Neotropics (Argentina) stored in eBird – a large citizen science platform – and quantified erroneous reports to calculate precision and recall metrics as measures for data accuracy. Precision increases with fewer false positives and recall increases with fewer false negatives; hence, high values of precision and recall will mirror a higher data accuracy. We found that 97% of the photos of all species were correctly identified. Most species (77%; n = 291) showed high accuracy in their identifications (precision and recall > 95%), with 122 species showing no errors. A few hard-to-identify species (10%; n = 40) showed low levels of data quality (63–90% precision or recall). Similarly, few species (12%; n = 46) exhibited intermediate precision or recall scores (90–95%). Further, we uncovered the existence of a complex network of cross-identifications composed of 272 species, with a predominance of tyrant flycatchers and ovenbirds, reflecting the strong traffic of errors that occurs within these families. To our knowledge, our study provides the first large-scale quantification of identification errors in photos submitted by citizen science contributors. We underscore the relevance of performing such assessments to understand how identification errors are distributed across a database before analysing data, and provide tools for citizen science stakeholders to direct more specific efforts toward species that need an improvement in data quality. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/205123 Gorleri, Fabricio Carlos; Jordan, Emilio Ariel; Roesler, Carlos Ignacio; Monteleone, Diego; Areta, Juan Ignacio; Using photographic records to quantify accuracy of bird identifications in citizen science data; Wiley Blackwell Publishing, Inc; Ibis; 165; 2; 4-2023; 458-471 0019-1019 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/205123 |
identifier_str_mv |
Gorleri, Fabricio Carlos; Jordan, Emilio Ariel; Roesler, Carlos Ignacio; Monteleone, Diego; Areta, Juan Ignacio; Using photographic records to quantify accuracy of bird identifications in citizen science data; Wiley Blackwell Publishing, Inc; Ibis; 165; 2; 4-2023; 458-471 0019-1019 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/ibi.13137 info:eu-repo/semantics/altIdentifier/doi/10.1111/ibi.13137 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083105974124544 |
score |
13.22299 |