The genome sequence of segmental allotetraploid peanut Arachis hypogaea
- Autores
- Bertioli, David J.; Jenkins, Jerry; Clevenger, Josh; Dudchenko, Olga; Gao, Dongying; Seijo, José Guillermo; Leal Bertioli, Soraya C.M.; Ren, Longhui; Farmer, Andrew D.; Pandey, Manish K.; Samoluk, Sergio Sebastián; Abernathy, Brian; Agarwal, Gaurav; Ballén Taborda, Carolina; Cameron, Connor; Campbell, Jacqueline; Chavarro, Carolina; Chitikineni, Annapurna; Chu, Ye; Dash, Sudhansu; El Baidouri, Moaine; Guo, Baozhu; Huang, Wei; Kim, Kyung Do; Korani, Walid; Lanciano, Sophie; Lui, Christopher G.; Mirouze, Marie; Moretzsohn, Márcio C.; Pham, Melanie; Shin, Jin Hee; Shirasawa, Kenta Shirasawa; Sinharoy, Senjuti; Sreedasyam, Avinash; Weeks, Nathan T.; Zhang, Xinyou; Zheng, Zheng; Sun, Ziqi; Froenicke, Lutz; Aiden, Erez L.; Michelmore, Richard; Varshney, Rajeev K.; Holbrook, C. Corley; Cannon, Ethalinda K. S.; Scheffler, Brian E.; Grimwood, Jane; Ozias-Akins, Peggy; Cannon, Steven B.; Jackson, Scott A.; Schmutz, Jeremy
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination has created diversity. Using new polyploid hybrids made from the ancestral species, we show how this can generate phenotypic changes such as spontaneous changes in the color of the flowers. We suggest that diversity generated by these genetic mechanisms helped to favor the domestication of the polyploid A. hypogaea over other diploid Arachis species cultivated by humans.
Fil: Bertioli, David J.. University of Georgia; Estados Unidos
Fil: Jenkins, Jerry. Hudsonalpha Institute For Biotechnology; Estados Unidos
Fil: Clevenger, Josh. University of Georgia; Estados Unidos
Fil: Dudchenko, Olga. The Center for Genome Architecture; Estados Unidos
Fil: Gao, Dongying. University of Georgia; Estados Unidos
Fil: Seijo, José Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; Argentina
Fil: Leal Bertioli, Soraya C.M.. Universidad Nacional del Nordeste; Argentina
Fil: Ren, Longhui. University of Georgia; Estados Unidos
Fil: Farmer, Andrew D.. University of Georgia; Estados Unidos
Fil: Pandey, Manish K.. Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); India
Fil: Samoluk, Sergio Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; Argentina
Fil: Abernathy, Brian. University of Georgia; Estados Unidos
Fil: Agarwal, Gaurav. University of Georgia; Estados Unidos
Fil: Ballén Taborda, Carolina. University of Georgia; Estados Unidos
Fil: Cameron, Connor. National Center for Genome Resources; Estados Unidos
Fil: Campbell, Jacqueline. University of Iowa; Estados Unidos
Fil: Chavarro, Carolina. University of Georgia; Estados Unidos
Fil: Chitikineni, Annapurna. Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); India
Fil: Chu, Ye. University of Georgia; Estados Unidos
Fil: Dash, Sudhansu. National Center for Genome Resources; Estados Unidos
Fil: El Baidouri, Moaine. Centre National de la Recherche Scientifique; Francia
Fil: Guo, Baozhu. University of Georgia; Estados Unidos
Fil: Huang, Wei. University of Iowa; Estados Unidos
Fil: Kim, Kyung Do. University of Georgia; Estados Unidos. Corporate R&D, LG Chem; Corea del Sur
Fil: Korani, Walid. University of Georgia; Estados Unidos
Fil: Lanciano, Sophie. Centre National de la Recherche Scientifique; Francia
Fil: Lui, Christopher G.. The Center for Genome Architecture; Estados Unidos
Fil: Mirouze, Marie. Centre National de la Recherche Scientifique; Francia
Fil: Moretzsohn, Márcio C.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Pham, Melanie. The Center for Genome Architecture; Estados Unidos
Fil: Shin, Jin Hee. University of Georgia; Estados Unidos
Fil: Shirasawa, Kenta Shirasawa. Department of Frontier Research and Development, Kazusa DNA Research Institute; Japón
Fil: Sinharoy, Senjuti. National Institute of Plant Genome Research; India
Fil: Sreedasyam, Avinash. Hudson Alpha Institute of Biotechnology; Estados Unidos
Fil: Weeks, Nathan T.. United States Department of Agriculture; Estados Unidos
Fil: Zhang, Xinyou. Henan Academy of Agricultural Sciences; China
Fil: Zheng, Zheng. Henan Academy of Agricultural Sciences; China
Fil: Sun, Ziqi. Henan Academy of Agricultural Sciences; China
Fil: Froenicke, Lutz. University of California at Davis; Estados Unidos
Fil: Aiden, Erez L.. The Center for Genome Architecture; Estados Unidos
Fil: Michelmore, Richard. University of California at Davis; Estados Unidos
Fil: Varshney, Rajeev K.. Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); India
Fil: Holbrook, C. Corley. United States Department of Agriculture; Estados Unidos
Fil: Cannon, Ethalinda K. S.. University of Iowa; Estados Unidos
Fil: Scheffler, Brian E.. United States Department of Agriculture; Estados Unidos
Fil: Grimwood, Jane. Hudson Alpha Institute of Biotechnology; Estados Unidos
Fil: Ozias-Akins, Peggy. University of Georgia; Estados Unidos
Fil: Cannon, Steven B.. United States Department of Agriculture; Estados Unidos
Fil: Jackson, Scott A.. University of Georgia; Estados Unidos
Fil: Schmutz, Jeremy. Hudson Alpha Institute of Biotechnology; Estados Unidos - Materia
-
ARACHIS HYPOGAEA
GENOME
SEGMENTAL ALLOTETRAPLOID - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/108255
Ver los metadatos del registro completo
id |
CONICETDig_a0777cecdeb6e8abadc90e91fdee3458 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/108255 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The genome sequence of segmental allotetraploid peanut Arachis hypogaeaBertioli, David J.Jenkins, JerryClevenger, JoshDudchenko, OlgaGao, DongyingSeijo, José GuillermoLeal Bertioli, Soraya C.M.Ren, LonghuiFarmer, Andrew D.Pandey, Manish K.Samoluk, Sergio SebastiánAbernathy, BrianAgarwal, GauravBallén Taborda, CarolinaCameron, ConnorCampbell, JacquelineChavarro, CarolinaChitikineni, AnnapurnaChu, YeDash, SudhansuEl Baidouri, MoaineGuo, BaozhuHuang, WeiKim, Kyung DoKorani, WalidLanciano, SophieLui, Christopher G.Mirouze, MarieMoretzsohn, Márcio C.Pham, MelanieShin, Jin HeeShirasawa, Kenta ShirasawaSinharoy, SenjutiSreedasyam, AvinashWeeks, Nathan T.Zhang, XinyouZheng, ZhengSun, ZiqiFroenicke, LutzAiden, Erez L.Michelmore, RichardVarshney, Rajeev K.Holbrook, C. CorleyCannon, Ethalinda K. S.Scheffler, Brian E.Grimwood, JaneOzias-Akins, PeggyCannon, Steven B.Jackson, Scott A.Schmutz, JeremyARACHIS HYPOGAEAGENOMESEGMENTAL ALLOTETRAPLOIDhttps://purl.org/becyt/ford/4.4https://purl.org/becyt/ford/4Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination has created diversity. Using new polyploid hybrids made from the ancestral species, we show how this can generate phenotypic changes such as spontaneous changes in the color of the flowers. We suggest that diversity generated by these genetic mechanisms helped to favor the domestication of the polyploid A. hypogaea over other diploid Arachis species cultivated by humans.Fil: Bertioli, David J.. University of Georgia; Estados UnidosFil: Jenkins, Jerry. Hudsonalpha Institute For Biotechnology; Estados UnidosFil: Clevenger, Josh. University of Georgia; Estados UnidosFil: Dudchenko, Olga. The Center for Genome Architecture; Estados UnidosFil: Gao, Dongying. University of Georgia; Estados UnidosFil: Seijo, José Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; ArgentinaFil: Leal Bertioli, Soraya C.M.. Universidad Nacional del Nordeste; ArgentinaFil: Ren, Longhui. University of Georgia; Estados UnidosFil: Farmer, Andrew D.. University of Georgia; Estados UnidosFil: Pandey, Manish K.. Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); IndiaFil: Samoluk, Sergio Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; ArgentinaFil: Abernathy, Brian. University of Georgia; Estados UnidosFil: Agarwal, Gaurav. University of Georgia; Estados UnidosFil: Ballén Taborda, Carolina. University of Georgia; Estados UnidosFil: Cameron, Connor. National Center for Genome Resources; Estados UnidosFil: Campbell, Jacqueline. University of Iowa; Estados UnidosFil: Chavarro, Carolina. University of Georgia; Estados UnidosFil: Chitikineni, Annapurna. Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); IndiaFil: Chu, Ye. University of Georgia; Estados UnidosFil: Dash, Sudhansu. National Center for Genome Resources; Estados UnidosFil: El Baidouri, Moaine. Centre National de la Recherche Scientifique; FranciaFil: Guo, Baozhu. University of Georgia; Estados UnidosFil: Huang, Wei. University of Iowa; Estados UnidosFil: Kim, Kyung Do. University of Georgia; Estados Unidos. Corporate R&D, LG Chem; Corea del SurFil: Korani, Walid. University of Georgia; Estados UnidosFil: Lanciano, Sophie. Centre National de la Recherche Scientifique; FranciaFil: Lui, Christopher G.. The Center for Genome Architecture; Estados UnidosFil: Mirouze, Marie. Centre National de la Recherche Scientifique; FranciaFil: Moretzsohn, Márcio C.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Pham, Melanie. The Center for Genome Architecture; Estados UnidosFil: Shin, Jin Hee. University of Georgia; Estados UnidosFil: Shirasawa, Kenta Shirasawa. Department of Frontier Research and Development, Kazusa DNA Research Institute; JapónFil: Sinharoy, Senjuti. National Institute of Plant Genome Research; IndiaFil: Sreedasyam, Avinash. Hudson Alpha Institute of Biotechnology; Estados UnidosFil: Weeks, Nathan T.. United States Department of Agriculture; Estados UnidosFil: Zhang, Xinyou. Henan Academy of Agricultural Sciences; ChinaFil: Zheng, Zheng. Henan Academy of Agricultural Sciences; ChinaFil: Sun, Ziqi. Henan Academy of Agricultural Sciences; ChinaFil: Froenicke, Lutz. University of California at Davis; Estados UnidosFil: Aiden, Erez L.. The Center for Genome Architecture; Estados UnidosFil: Michelmore, Richard. University of California at Davis; Estados UnidosFil: Varshney, Rajeev K.. Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); IndiaFil: Holbrook, C. Corley. United States Department of Agriculture; Estados UnidosFil: Cannon, Ethalinda K. S.. University of Iowa; Estados UnidosFil: Scheffler, Brian E.. United States Department of Agriculture; Estados UnidosFil: Grimwood, Jane. Hudson Alpha Institute of Biotechnology; Estados UnidosFil: Ozias-Akins, Peggy. University of Georgia; Estados UnidosFil: Cannon, Steven B.. United States Department of Agriculture; Estados UnidosFil: Jackson, Scott A.. University of Georgia; Estados UnidosFil: Schmutz, Jeremy. Hudson Alpha Institute of Biotechnology; Estados UnidosNature Publishing Group2019-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108255Bertioli, David J.; Jenkins, Jerry; Clevenger, Josh; Dudchenko, Olga; Gao, Dongying; et al.; The genome sequence of segmental allotetraploid peanut Arachis hypogaea; Nature Publishing Group; Nature Genetics; 51; 5; 5-2019; 877-8841061-40361546-1718CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41588-019-0405-zinfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41588-019-0405-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:32Zoai:ri.conicet.gov.ar:11336/108255instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:32.573CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The genome sequence of segmental allotetraploid peanut Arachis hypogaea |
title |
The genome sequence of segmental allotetraploid peanut Arachis hypogaea |
spellingShingle |
The genome sequence of segmental allotetraploid peanut Arachis hypogaea Bertioli, David J. ARACHIS HYPOGAEA GENOME SEGMENTAL ALLOTETRAPLOID |
title_short |
The genome sequence of segmental allotetraploid peanut Arachis hypogaea |
title_full |
The genome sequence of segmental allotetraploid peanut Arachis hypogaea |
title_fullStr |
The genome sequence of segmental allotetraploid peanut Arachis hypogaea |
title_full_unstemmed |
The genome sequence of segmental allotetraploid peanut Arachis hypogaea |
title_sort |
The genome sequence of segmental allotetraploid peanut Arachis hypogaea |
dc.creator.none.fl_str_mv |
Bertioli, David J. Jenkins, Jerry Clevenger, Josh Dudchenko, Olga Gao, Dongying Seijo, José Guillermo Leal Bertioli, Soraya C.M. Ren, Longhui Farmer, Andrew D. Pandey, Manish K. Samoluk, Sergio Sebastián Abernathy, Brian Agarwal, Gaurav Ballén Taborda, Carolina Cameron, Connor Campbell, Jacqueline Chavarro, Carolina Chitikineni, Annapurna Chu, Ye Dash, Sudhansu El Baidouri, Moaine Guo, Baozhu Huang, Wei Kim, Kyung Do Korani, Walid Lanciano, Sophie Lui, Christopher G. Mirouze, Marie Moretzsohn, Márcio C. Pham, Melanie Shin, Jin Hee Shirasawa, Kenta Shirasawa Sinharoy, Senjuti Sreedasyam, Avinash Weeks, Nathan T. Zhang, Xinyou Zheng, Zheng Sun, Ziqi Froenicke, Lutz Aiden, Erez L. Michelmore, Richard Varshney, Rajeev K. Holbrook, C. Corley Cannon, Ethalinda K. S. Scheffler, Brian E. Grimwood, Jane Ozias-Akins, Peggy Cannon, Steven B. Jackson, Scott A. Schmutz, Jeremy |
author |
Bertioli, David J. |
author_facet |
Bertioli, David J. Jenkins, Jerry Clevenger, Josh Dudchenko, Olga Gao, Dongying Seijo, José Guillermo Leal Bertioli, Soraya C.M. Ren, Longhui Farmer, Andrew D. Pandey, Manish K. Samoluk, Sergio Sebastián Abernathy, Brian Agarwal, Gaurav Ballén Taborda, Carolina Cameron, Connor Campbell, Jacqueline Chavarro, Carolina Chitikineni, Annapurna Chu, Ye Dash, Sudhansu El Baidouri, Moaine Guo, Baozhu Huang, Wei Kim, Kyung Do Korani, Walid Lanciano, Sophie Lui, Christopher G. Mirouze, Marie Moretzsohn, Márcio C. Pham, Melanie Shin, Jin Hee Shirasawa, Kenta Shirasawa Sinharoy, Senjuti Sreedasyam, Avinash Weeks, Nathan T. Zhang, Xinyou Zheng, Zheng Sun, Ziqi Froenicke, Lutz Aiden, Erez L. Michelmore, Richard Varshney, Rajeev K. Holbrook, C. Corley Cannon, Ethalinda K. S. Scheffler, Brian E. Grimwood, Jane Ozias-Akins, Peggy Cannon, Steven B. Jackson, Scott A. Schmutz, Jeremy |
author_role |
author |
author2 |
Jenkins, Jerry Clevenger, Josh Dudchenko, Olga Gao, Dongying Seijo, José Guillermo Leal Bertioli, Soraya C.M. Ren, Longhui Farmer, Andrew D. Pandey, Manish K. Samoluk, Sergio Sebastián Abernathy, Brian Agarwal, Gaurav Ballén Taborda, Carolina Cameron, Connor Campbell, Jacqueline Chavarro, Carolina Chitikineni, Annapurna Chu, Ye Dash, Sudhansu El Baidouri, Moaine Guo, Baozhu Huang, Wei Kim, Kyung Do Korani, Walid Lanciano, Sophie Lui, Christopher G. Mirouze, Marie Moretzsohn, Márcio C. Pham, Melanie Shin, Jin Hee Shirasawa, Kenta Shirasawa Sinharoy, Senjuti Sreedasyam, Avinash Weeks, Nathan T. Zhang, Xinyou Zheng, Zheng Sun, Ziqi Froenicke, Lutz Aiden, Erez L. Michelmore, Richard Varshney, Rajeev K. Holbrook, C. Corley Cannon, Ethalinda K. S. Scheffler, Brian E. Grimwood, Jane Ozias-Akins, Peggy Cannon, Steven B. Jackson, Scott A. Schmutz, Jeremy |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
ARACHIS HYPOGAEA GENOME SEGMENTAL ALLOTETRAPLOID |
topic |
ARACHIS HYPOGAEA GENOME SEGMENTAL ALLOTETRAPLOID |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.4 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination has created diversity. Using new polyploid hybrids made from the ancestral species, we show how this can generate phenotypic changes such as spontaneous changes in the color of the flowers. We suggest that diversity generated by these genetic mechanisms helped to favor the domestication of the polyploid A. hypogaea over other diploid Arachis species cultivated by humans. Fil: Bertioli, David J.. University of Georgia; Estados Unidos Fil: Jenkins, Jerry. Hudsonalpha Institute For Biotechnology; Estados Unidos Fil: Clevenger, Josh. University of Georgia; Estados Unidos Fil: Dudchenko, Olga. The Center for Genome Architecture; Estados Unidos Fil: Gao, Dongying. University of Georgia; Estados Unidos Fil: Seijo, José Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; Argentina Fil: Leal Bertioli, Soraya C.M.. Universidad Nacional del Nordeste; Argentina Fil: Ren, Longhui. University of Georgia; Estados Unidos Fil: Farmer, Andrew D.. University of Georgia; Estados Unidos Fil: Pandey, Manish K.. Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); India Fil: Samoluk, Sergio Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; Argentina Fil: Abernathy, Brian. University of Georgia; Estados Unidos Fil: Agarwal, Gaurav. University of Georgia; Estados Unidos Fil: Ballén Taborda, Carolina. University of Georgia; Estados Unidos Fil: Cameron, Connor. National Center for Genome Resources; Estados Unidos Fil: Campbell, Jacqueline. University of Iowa; Estados Unidos Fil: Chavarro, Carolina. University of Georgia; Estados Unidos Fil: Chitikineni, Annapurna. Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); India Fil: Chu, Ye. University of Georgia; Estados Unidos Fil: Dash, Sudhansu. National Center for Genome Resources; Estados Unidos Fil: El Baidouri, Moaine. Centre National de la Recherche Scientifique; Francia Fil: Guo, Baozhu. University of Georgia; Estados Unidos Fil: Huang, Wei. University of Iowa; Estados Unidos Fil: Kim, Kyung Do. University of Georgia; Estados Unidos. Corporate R&D, LG Chem; Corea del Sur Fil: Korani, Walid. University of Georgia; Estados Unidos Fil: Lanciano, Sophie. Centre National de la Recherche Scientifique; Francia Fil: Lui, Christopher G.. The Center for Genome Architecture; Estados Unidos Fil: Mirouze, Marie. Centre National de la Recherche Scientifique; Francia Fil: Moretzsohn, Márcio C.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil Fil: Pham, Melanie. The Center for Genome Architecture; Estados Unidos Fil: Shin, Jin Hee. University of Georgia; Estados Unidos Fil: Shirasawa, Kenta Shirasawa. Department of Frontier Research and Development, Kazusa DNA Research Institute; Japón Fil: Sinharoy, Senjuti. National Institute of Plant Genome Research; India Fil: Sreedasyam, Avinash. Hudson Alpha Institute of Biotechnology; Estados Unidos Fil: Weeks, Nathan T.. United States Department of Agriculture; Estados Unidos Fil: Zhang, Xinyou. Henan Academy of Agricultural Sciences; China Fil: Zheng, Zheng. Henan Academy of Agricultural Sciences; China Fil: Sun, Ziqi. Henan Academy of Agricultural Sciences; China Fil: Froenicke, Lutz. University of California at Davis; Estados Unidos Fil: Aiden, Erez L.. The Center for Genome Architecture; Estados Unidos Fil: Michelmore, Richard. University of California at Davis; Estados Unidos Fil: Varshney, Rajeev K.. Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); India Fil: Holbrook, C. Corley. United States Department of Agriculture; Estados Unidos Fil: Cannon, Ethalinda K. S.. University of Iowa; Estados Unidos Fil: Scheffler, Brian E.. United States Department of Agriculture; Estados Unidos Fil: Grimwood, Jane. Hudson Alpha Institute of Biotechnology; Estados Unidos Fil: Ozias-Akins, Peggy. University of Georgia; Estados Unidos Fil: Cannon, Steven B.. United States Department of Agriculture; Estados Unidos Fil: Jackson, Scott A.. University of Georgia; Estados Unidos Fil: Schmutz, Jeremy. Hudson Alpha Institute of Biotechnology; Estados Unidos |
description |
Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination has created diversity. Using new polyploid hybrids made from the ancestral species, we show how this can generate phenotypic changes such as spontaneous changes in the color of the flowers. We suggest that diversity generated by these genetic mechanisms helped to favor the domestication of the polyploid A. hypogaea over other diploid Arachis species cultivated by humans. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/108255 Bertioli, David J.; Jenkins, Jerry; Clevenger, Josh; Dudchenko, Olga; Gao, Dongying; et al.; The genome sequence of segmental allotetraploid peanut Arachis hypogaea; Nature Publishing Group; Nature Genetics; 51; 5; 5-2019; 877-884 1061-4036 1546-1718 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/108255 |
identifier_str_mv |
Bertioli, David J.; Jenkins, Jerry; Clevenger, Josh; Dudchenko, Olga; Gao, Dongying; et al.; The genome sequence of segmental allotetraploid peanut Arachis hypogaea; Nature Publishing Group; Nature Genetics; 51; 5; 5-2019; 877-884 1061-4036 1546-1718 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41588-019-0405-z info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41588-019-0405-z |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613218297708544 |
score |
13.070432 |