Non-linear dynamic response of a rotating thin-walled composite beam

Autores
Machado, Sebastián Pablo; Saravia, César Martín
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The nonlinear planar response of a cantilever rota ting slender beam to a principal parametric resonance of its first bending mode is analyzed. The equation of motion is obtained in the form of an integro-partial differential equation, taking into account mid-plane stretching, a rotation speed and modal damping. A composite linear elastic material is considered and the cross-section properties are assumed to be constant given the assumption of sma ll strains. The beam is subjected to a harmonic transverse load in the presence of in ternal resonance. The internal resonance can be activated for a range of the beam rotating speed, where the second natural frequency is approximately three times the first natural frequency. The method of multiple scales method is used to derive four-first ordinary differential equations that govern the evolution of the amplitude and phase of the response. These equations are used to determine the steady stat e responses and their stability. Amplitude and phase modulation equations as well as external force–r esponse and frequency–response curves are obtained. Numerical simulations show a complex dynamic scenario and detect chaos and unbounded motions in the instability regions of the periodic solutions.
Fil: Machado, Sebastián Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
COMPOSITE MATERIAL
THIN-WALLED ROTATING BEAM
NON-LINEAR DYNAMIC
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/68294

id CONICETDig_9fecd0632fefcb57020b32a95776ee33
oai_identifier_str oai:ri.conicet.gov.ar:11336/68294
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Non-linear dynamic response of a rotating thin-walled composite beamMachado, Sebastián PabloSaravia, César MartínCOMPOSITE MATERIALTHIN-WALLED ROTATING BEAMNON-LINEAR DYNAMIChttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The nonlinear planar response of a cantilever rota ting slender beam to a principal parametric resonance of its first bending mode is analyzed. The equation of motion is obtained in the form of an integro-partial differential equation, taking into account mid-plane stretching, a rotation speed and modal damping. A composite linear elastic material is considered and the cross-section properties are assumed to be constant given the assumption of sma ll strains. The beam is subjected to a harmonic transverse load in the presence of in ternal resonance. The internal resonance can be activated for a range of the beam rotating speed, where the second natural frequency is approximately three times the first natural frequency. The method of multiple scales method is used to derive four-first ordinary differential equations that govern the evolution of the amplitude and phase of the response. These equations are used to determine the steady stat e responses and their stability. Amplitude and phase modulation equations as well as external force–r esponse and frequency–response curves are obtained. Numerical simulations show a complex dynamic scenario and detect chaos and unbounded motions in the instability regions of the periodic solutions.Fil: Machado, Sebastián Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaFil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAsociación Argentina de Mecánica Computacional2010-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68294Machado, Sebastián Pablo; Saravia, César Martín; Non-linear dynamic response of a rotating thin-walled composite beam; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXIX; 12; 11-2010; 1203-12242591-3522CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/3082info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:26Zoai:ri.conicet.gov.ar:11336/68294instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:26.74CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Non-linear dynamic response of a rotating thin-walled composite beam
title Non-linear dynamic response of a rotating thin-walled composite beam
spellingShingle Non-linear dynamic response of a rotating thin-walled composite beam
Machado, Sebastián Pablo
COMPOSITE MATERIAL
THIN-WALLED ROTATING BEAM
NON-LINEAR DYNAMIC
title_short Non-linear dynamic response of a rotating thin-walled composite beam
title_full Non-linear dynamic response of a rotating thin-walled composite beam
title_fullStr Non-linear dynamic response of a rotating thin-walled composite beam
title_full_unstemmed Non-linear dynamic response of a rotating thin-walled composite beam
title_sort Non-linear dynamic response of a rotating thin-walled composite beam
dc.creator.none.fl_str_mv Machado, Sebastián Pablo
Saravia, César Martín
author Machado, Sebastián Pablo
author_facet Machado, Sebastián Pablo
Saravia, César Martín
author_role author
author2 Saravia, César Martín
author2_role author
dc.subject.none.fl_str_mv COMPOSITE MATERIAL
THIN-WALLED ROTATING BEAM
NON-LINEAR DYNAMIC
topic COMPOSITE MATERIAL
THIN-WALLED ROTATING BEAM
NON-LINEAR DYNAMIC
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The nonlinear planar response of a cantilever rota ting slender beam to a principal parametric resonance of its first bending mode is analyzed. The equation of motion is obtained in the form of an integro-partial differential equation, taking into account mid-plane stretching, a rotation speed and modal damping. A composite linear elastic material is considered and the cross-section properties are assumed to be constant given the assumption of sma ll strains. The beam is subjected to a harmonic transverse load in the presence of in ternal resonance. The internal resonance can be activated for a range of the beam rotating speed, where the second natural frequency is approximately three times the first natural frequency. The method of multiple scales method is used to derive four-first ordinary differential equations that govern the evolution of the amplitude and phase of the response. These equations are used to determine the steady stat e responses and their stability. Amplitude and phase modulation equations as well as external force–r esponse and frequency–response curves are obtained. Numerical simulations show a complex dynamic scenario and detect chaos and unbounded motions in the instability regions of the periodic solutions.
Fil: Machado, Sebastián Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The nonlinear planar response of a cantilever rota ting slender beam to a principal parametric resonance of its first bending mode is analyzed. The equation of motion is obtained in the form of an integro-partial differential equation, taking into account mid-plane stretching, a rotation speed and modal damping. A composite linear elastic material is considered and the cross-section properties are assumed to be constant given the assumption of sma ll strains. The beam is subjected to a harmonic transverse load in the presence of in ternal resonance. The internal resonance can be activated for a range of the beam rotating speed, where the second natural frequency is approximately three times the first natural frequency. The method of multiple scales method is used to derive four-first ordinary differential equations that govern the evolution of the amplitude and phase of the response. These equations are used to determine the steady stat e responses and their stability. Amplitude and phase modulation equations as well as external force–r esponse and frequency–response curves are obtained. Numerical simulations show a complex dynamic scenario and detect chaos and unbounded motions in the instability regions of the periodic solutions.
publishDate 2010
dc.date.none.fl_str_mv 2010-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/68294
Machado, Sebastián Pablo; Saravia, César Martín; Non-linear dynamic response of a rotating thin-walled composite beam; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXIX; 12; 11-2010; 1203-1224
2591-3522
CONICET Digital
CONICET
url http://hdl.handle.net/11336/68294
identifier_str_mv Machado, Sebastián Pablo; Saravia, César Martín; Non-linear dynamic response of a rotating thin-walled composite beam; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXIX; 12; 11-2010; 1203-1224
2591-3522
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/3082
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614482236538880
score 13.070432