Non-linear dynamic response of a rotating thin-walled composite beam
- Autores
- Machado, Sebastián Pablo; Saravia, César Martín
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The nonlinear planar response of a cantilever rota ting slender beam to a principal parametric resonance of its first bending mode is analyzed. The equation of motion is obtained in the form of an integro-partial differential equation, taking into account mid-plane stretching, a rotation speed and modal damping. A composite linear elastic material is considered and the cross-section properties are assumed to be constant given the assumption of sma ll strains. The beam is subjected to a harmonic transverse load in the presence of in ternal resonance. The internal resonance can be activated for a range of the beam rotating speed, where the second natural frequency is approximately three times the first natural frequency. The method of multiple scales method is used to derive four-first ordinary differential equations that govern the evolution of the amplitude and phase of the response. These equations are used to determine the steady stat e responses and their stability. Amplitude and phase modulation equations as well as external force–r esponse and frequency–response curves are obtained. Numerical simulations show a complex dynamic scenario and detect chaos and unbounded motions in the instability regions of the periodic solutions.
Fil: Machado, Sebastián Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
COMPOSITE MATERIAL
THIN-WALLED ROTATING BEAM
NON-LINEAR DYNAMIC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/68294
Ver los metadatos del registro completo
| id |
CONICETDig_9fecd0632fefcb57020b32a95776ee33 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/68294 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Non-linear dynamic response of a rotating thin-walled composite beamMachado, Sebastián PabloSaravia, César MartínCOMPOSITE MATERIALTHIN-WALLED ROTATING BEAMNON-LINEAR DYNAMIChttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The nonlinear planar response of a cantilever rota ting slender beam to a principal parametric resonance of its first bending mode is analyzed. The equation of motion is obtained in the form of an integro-partial differential equation, taking into account mid-plane stretching, a rotation speed and modal damping. A composite linear elastic material is considered and the cross-section properties are assumed to be constant given the assumption of sma ll strains. The beam is subjected to a harmonic transverse load in the presence of in ternal resonance. The internal resonance can be activated for a range of the beam rotating speed, where the second natural frequency is approximately three times the first natural frequency. The method of multiple scales method is used to derive four-first ordinary differential equations that govern the evolution of the amplitude and phase of the response. These equations are used to determine the steady stat e responses and their stability. Amplitude and phase modulation equations as well as external force–r esponse and frequency–response curves are obtained. Numerical simulations show a complex dynamic scenario and detect chaos and unbounded motions in the instability regions of the periodic solutions.Fil: Machado, Sebastián Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaFil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAsociación Argentina de Mecánica Computacional2010-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68294Machado, Sebastián Pablo; Saravia, César Martín; Non-linear dynamic response of a rotating thin-walled composite beam; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXIX; 12; 11-2010; 1203-12242591-3522CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/3082info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:17:37Zoai:ri.conicet.gov.ar:11336/68294instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:17:37.621CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Non-linear dynamic response of a rotating thin-walled composite beam |
| title |
Non-linear dynamic response of a rotating thin-walled composite beam |
| spellingShingle |
Non-linear dynamic response of a rotating thin-walled composite beam Machado, Sebastián Pablo COMPOSITE MATERIAL THIN-WALLED ROTATING BEAM NON-LINEAR DYNAMIC |
| title_short |
Non-linear dynamic response of a rotating thin-walled composite beam |
| title_full |
Non-linear dynamic response of a rotating thin-walled composite beam |
| title_fullStr |
Non-linear dynamic response of a rotating thin-walled composite beam |
| title_full_unstemmed |
Non-linear dynamic response of a rotating thin-walled composite beam |
| title_sort |
Non-linear dynamic response of a rotating thin-walled composite beam |
| dc.creator.none.fl_str_mv |
Machado, Sebastián Pablo Saravia, César Martín |
| author |
Machado, Sebastián Pablo |
| author_facet |
Machado, Sebastián Pablo Saravia, César Martín |
| author_role |
author |
| author2 |
Saravia, César Martín |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
COMPOSITE MATERIAL THIN-WALLED ROTATING BEAM NON-LINEAR DYNAMIC |
| topic |
COMPOSITE MATERIAL THIN-WALLED ROTATING BEAM NON-LINEAR DYNAMIC |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
The nonlinear planar response of a cantilever rota ting slender beam to a principal parametric resonance of its first bending mode is analyzed. The equation of motion is obtained in the form of an integro-partial differential equation, taking into account mid-plane stretching, a rotation speed and modal damping. A composite linear elastic material is considered and the cross-section properties are assumed to be constant given the assumption of sma ll strains. The beam is subjected to a harmonic transverse load in the presence of in ternal resonance. The internal resonance can be activated for a range of the beam rotating speed, where the second natural frequency is approximately three times the first natural frequency. The method of multiple scales method is used to derive four-first ordinary differential equations that govern the evolution of the amplitude and phase of the response. These equations are used to determine the steady stat e responses and their stability. Amplitude and phase modulation equations as well as external force–r esponse and frequency–response curves are obtained. Numerical simulations show a complex dynamic scenario and detect chaos and unbounded motions in the instability regions of the periodic solutions. Fil: Machado, Sebastián Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina Fil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
The nonlinear planar response of a cantilever rota ting slender beam to a principal parametric resonance of its first bending mode is analyzed. The equation of motion is obtained in the form of an integro-partial differential equation, taking into account mid-plane stretching, a rotation speed and modal damping. A composite linear elastic material is considered and the cross-section properties are assumed to be constant given the assumption of sma ll strains. The beam is subjected to a harmonic transverse load in the presence of in ternal resonance. The internal resonance can be activated for a range of the beam rotating speed, where the second natural frequency is approximately three times the first natural frequency. The method of multiple scales method is used to derive four-first ordinary differential equations that govern the evolution of the amplitude and phase of the response. These equations are used to determine the steady stat e responses and their stability. Amplitude and phase modulation equations as well as external force–r esponse and frequency–response curves are obtained. Numerical simulations show a complex dynamic scenario and detect chaos and unbounded motions in the instability regions of the periodic solutions. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/68294 Machado, Sebastián Pablo; Saravia, César Martín; Non-linear dynamic response of a rotating thin-walled composite beam; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXIX; 12; 11-2010; 1203-1224 2591-3522 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/68294 |
| identifier_str_mv |
Machado, Sebastián Pablo; Saravia, César Martín; Non-linear dynamic response of a rotating thin-walled composite beam; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; XXIX; 12; 11-2010; 1203-1224 2591-3522 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/3082 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
| publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782602387652608 |
| score |
12.982451 |