The shear deformation effect on the nonlinear dynamic of a simple rotor blade
- Autores
- Machado, Sebastián Pablo; Saravia, César Martín
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The nonlinear planar response of a cantilever rotating slender beam to a principal parametric resonance of its first bending mode is analyzed considering the effect of shear deformation. The equation of motion is obtained in the form of an integro-partial differential equation, taking into account mid-plane stretching, a rotation speed and modal damping. A composite linear elastic material is considered and the cross-section properties are assumed to be constant given the assumption of small strains. The beam is subjected to a harmonic transverse load in the presence of internal resonance. The internal resonance can be activated for a range of the beam rotating speed, where the second natural frequency is approximately three times the first natural frequency. The method of multiple scales method is used to derive four-first ordinary differential equations that govern the evolution of the amplitude and phase of the response. These equations are used to determine the steady state responses and their stability. Nonlinear normal modes are obtained for the two models, considering and neglecting the effect of shear deformation. The results of the analysis show that the equilibrium solutions are influenced by the transverse shear effect. When this effect is ignored the amplitude of vibration is reduced significantly, thus altering the dynamic response of the beam. This alteration can lead to an incorrect stability prediction of the periodic solutions.
Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Saravia, César Martín. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Composite material
thin-walled rotating beam
non-linear dynamic - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/215842
Ver los metadatos del registro completo
id |
CONICETDig_3f6247cad08f95272aedf556beff91f4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/215842 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The shear deformation effect on the nonlinear dynamic of a simple rotor bladeMachado, Sebastián PabloSaravia, César MartínComposite materialthin-walled rotating beamnon-linear dynamichttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The nonlinear planar response of a cantilever rotating slender beam to a principal parametric resonance of its first bending mode is analyzed considering the effect of shear deformation. The equation of motion is obtained in the form of an integro-partial differential equation, taking into account mid-plane stretching, a rotation speed and modal damping. A composite linear elastic material is considered and the cross-section properties are assumed to be constant given the assumption of small strains. The beam is subjected to a harmonic transverse load in the presence of internal resonance. The internal resonance can be activated for a range of the beam rotating speed, where the second natural frequency is approximately three times the first natural frequency. The method of multiple scales method is used to derive four-first ordinary differential equations that govern the evolution of the amplitude and phase of the response. These equations are used to determine the steady state responses and their stability. Nonlinear normal modes are obtained for the two models, considering and neglecting the effect of shear deformation. The results of the analysis show that the equilibrium solutions are influenced by the transverse shear effect. When this effect is ignored the amplitude of vibration is reduced significantly, thus altering the dynamic response of the beam. This alteration can lead to an incorrect stability prediction of the periodic solutions.Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Saravia, César Martín. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAsociación Argentina de Mecánica Computacional2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215842Machado, Sebastián Pablo; Saravia, César Martín; The shear deformation effect on the nonlinear dynamic of a simple rotor blade; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; 31; 11-2012; 2469-2484CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.amcaonline.org.ar/ojs/index.php/mc/article/view/4201/4127info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:05Zoai:ri.conicet.gov.ar:11336/215842instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:05.499CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The shear deformation effect on the nonlinear dynamic of a simple rotor blade |
title |
The shear deformation effect on the nonlinear dynamic of a simple rotor blade |
spellingShingle |
The shear deformation effect on the nonlinear dynamic of a simple rotor blade Machado, Sebastián Pablo Composite material thin-walled rotating beam non-linear dynamic |
title_short |
The shear deformation effect on the nonlinear dynamic of a simple rotor blade |
title_full |
The shear deformation effect on the nonlinear dynamic of a simple rotor blade |
title_fullStr |
The shear deformation effect on the nonlinear dynamic of a simple rotor blade |
title_full_unstemmed |
The shear deformation effect on the nonlinear dynamic of a simple rotor blade |
title_sort |
The shear deformation effect on the nonlinear dynamic of a simple rotor blade |
dc.creator.none.fl_str_mv |
Machado, Sebastián Pablo Saravia, César Martín |
author |
Machado, Sebastián Pablo |
author_facet |
Machado, Sebastián Pablo Saravia, César Martín |
author_role |
author |
author2 |
Saravia, César Martín |
author2_role |
author |
dc.subject.none.fl_str_mv |
Composite material thin-walled rotating beam non-linear dynamic |
topic |
Composite material thin-walled rotating beam non-linear dynamic |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The nonlinear planar response of a cantilever rotating slender beam to a principal parametric resonance of its first bending mode is analyzed considering the effect of shear deformation. The equation of motion is obtained in the form of an integro-partial differential equation, taking into account mid-plane stretching, a rotation speed and modal damping. A composite linear elastic material is considered and the cross-section properties are assumed to be constant given the assumption of small strains. The beam is subjected to a harmonic transverse load in the presence of internal resonance. The internal resonance can be activated for a range of the beam rotating speed, where the second natural frequency is approximately three times the first natural frequency. The method of multiple scales method is used to derive four-first ordinary differential equations that govern the evolution of the amplitude and phase of the response. These equations are used to determine the steady state responses and their stability. Nonlinear normal modes are obtained for the two models, considering and neglecting the effect of shear deformation. The results of the analysis show that the equilibrium solutions are influenced by the transverse shear effect. When this effect is ignored the amplitude of vibration is reduced significantly, thus altering the dynamic response of the beam. This alteration can lead to an incorrect stability prediction of the periodic solutions. Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Saravia, César Martín. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The nonlinear planar response of a cantilever rotating slender beam to a principal parametric resonance of its first bending mode is analyzed considering the effect of shear deformation. The equation of motion is obtained in the form of an integro-partial differential equation, taking into account mid-plane stretching, a rotation speed and modal damping. A composite linear elastic material is considered and the cross-section properties are assumed to be constant given the assumption of small strains. The beam is subjected to a harmonic transverse load in the presence of internal resonance. The internal resonance can be activated for a range of the beam rotating speed, where the second natural frequency is approximately three times the first natural frequency. The method of multiple scales method is used to derive four-first ordinary differential equations that govern the evolution of the amplitude and phase of the response. These equations are used to determine the steady state responses and their stability. Nonlinear normal modes are obtained for the two models, considering and neglecting the effect of shear deformation. The results of the analysis show that the equilibrium solutions are influenced by the transverse shear effect. When this effect is ignored the amplitude of vibration is reduced significantly, thus altering the dynamic response of the beam. This alteration can lead to an incorrect stability prediction of the periodic solutions. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/215842 Machado, Sebastián Pablo; Saravia, César Martín; The shear deformation effect on the nonlinear dynamic of a simple rotor blade; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; 31; 11-2012; 2469-2484 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/215842 |
identifier_str_mv |
Machado, Sebastián Pablo; Saravia, César Martín; The shear deformation effect on the nonlinear dynamic of a simple rotor blade; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; 31; 11-2012; 2469-2484 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.amcaonline.org.ar/ojs/index.php/mc/article/view/4201/4127 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
publisher.none.fl_str_mv |
Asociación Argentina de Mecánica Computacional |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613521386504192 |
score |
13.070432 |