Pore structure description of mortars containing ground granulated blast-furnace slag by mercury intrusion porosimetry and dynamic vapour sorption

Autores
Alderete, Natalia Mariel; Villagrán Zaccardi, Yury Andrés; Mignon, Arn; Snoeck, Didier; de Belie, Nele
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The description of the pore structure is a key aspect when studying the durability of cement-based materials. Many techniques have been developed over the years in order to describe the actual complex microstructure of these materials. These techniques can be useful to determine the change in pore structure when supplementary cementitious materials are used and also track its evolution with time. This paper particularly aims to describe the changes in the pore structure of mortars with contents of 20, 40 and 60% of ground-granulated blast-furnace slag (GGBFS) in replacement of cement, at the ages of 28 and 90 days. Two widely accepted techniques were applied: dynamic water vapour sorption (DVS) and mercury intrusion porosimetry (MIP). For the data analysis from the DVS test, the Barret-Joyner-Halenda (BJH) model was used for pore size distribution assessment. Moreover, since the extent of this model does not cover the smallest range of pores, calculations with the Dubinin-Radushkevich (DR) model were also made. Results from the MIP test were used to characterize the threshold diameter, the smallest intrudable diameter, and the intrudable porosity. GGBFS replacement leads to a slight increase in porosity values at 28 days, especially seen in the DVS results for the pore size range of 0.002–0.05 µm. DVS results at 90 days for the mix with 40% slag replacement showed a marked reduction in porosity and a shift in pore structure to the finer pore size range when compared to the 28 day results. For all cases, the total porosity was found to be less influential on the test results than pore connectivity.
Fil: Alderete, Natalia Mariel. University of Ghent; Bélgica. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Área Tecnología del Hormigón; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Villagrán Zaccardi, Yury Andrés. University of Ghent; Bélgica. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Área Tecnología del Hormigón; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mignon, Arn. University of Ghent; Bélgica
Fil: Snoeck, Didier. University of Ghent; Bélgica
Fil: de Belie, Nele. University of Ghent; Bélgica
Materia
Dynamic Vapour Sorption
Ground Granulated Blast-Furnace Slag
Mercury Intrusion Porosimetry
Pore Connectivity
Porosity
Supplementary Cementitious Materials
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/56430

id CONICETDig_9fd5227bb4375226a4d223fb2b16f89f
oai_identifier_str oai:ri.conicet.gov.ar:11336/56430
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Pore structure description of mortars containing ground granulated blast-furnace slag by mercury intrusion porosimetry and dynamic vapour sorptionAlderete, Natalia MarielVillagrán Zaccardi, Yury AndrésMignon, ArnSnoeck, Didierde Belie, NeleDynamic Vapour SorptionGround Granulated Blast-Furnace SlagMercury Intrusion PorosimetryPore ConnectivityPorositySupplementary Cementitious Materialshttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2The description of the pore structure is a key aspect when studying the durability of cement-based materials. Many techniques have been developed over the years in order to describe the actual complex microstructure of these materials. These techniques can be useful to determine the change in pore structure when supplementary cementitious materials are used and also track its evolution with time. This paper particularly aims to describe the changes in the pore structure of mortars with contents of 20, 40 and 60% of ground-granulated blast-furnace slag (GGBFS) in replacement of cement, at the ages of 28 and 90 days. Two widely accepted techniques were applied: dynamic water vapour sorption (DVS) and mercury intrusion porosimetry (MIP). For the data analysis from the DVS test, the Barret-Joyner-Halenda (BJH) model was used for pore size distribution assessment. Moreover, since the extent of this model does not cover the smallest range of pores, calculations with the Dubinin-Radushkevich (DR) model were also made. Results from the MIP test were used to characterize the threshold diameter, the smallest intrudable diameter, and the intrudable porosity. GGBFS replacement leads to a slight increase in porosity values at 28 days, especially seen in the DVS results for the pore size range of 0.002–0.05 µm. DVS results at 90 days for the mix with 40% slag replacement showed a marked reduction in porosity and a shift in pore structure to the finer pore size range when compared to the 28 day results. For all cases, the total porosity was found to be less influential on the test results than pore connectivity.Fil: Alderete, Natalia Mariel. University of Ghent; Bélgica. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Área Tecnología del Hormigón; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Villagrán Zaccardi, Yury Andrés. University of Ghent; Bélgica. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Área Tecnología del Hormigón; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mignon, Arn. University of Ghent; BélgicaFil: Snoeck, Didier. University of Ghent; BélgicaFil: de Belie, Nele. University of Ghent; BélgicaElsevier2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56430Alderete, Natalia Mariel; Villagrán Zaccardi, Yury Andrés; Mignon, Arn; Snoeck, Didier; de Belie, Nele; Pore structure description of mortars containing ground granulated blast-furnace slag by mercury intrusion porosimetry and dynamic vapour sorption; Elsevier; Construction And Building Materials; 145; 8-2017; 157-1650950-0618CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.conbuildmat.2017.03.245info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0950061817306396info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:30Zoai:ri.conicet.gov.ar:11336/56430instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:30.958CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Pore structure description of mortars containing ground granulated blast-furnace slag by mercury intrusion porosimetry and dynamic vapour sorption
title Pore structure description of mortars containing ground granulated blast-furnace slag by mercury intrusion porosimetry and dynamic vapour sorption
spellingShingle Pore structure description of mortars containing ground granulated blast-furnace slag by mercury intrusion porosimetry and dynamic vapour sorption
Alderete, Natalia Mariel
Dynamic Vapour Sorption
Ground Granulated Blast-Furnace Slag
Mercury Intrusion Porosimetry
Pore Connectivity
Porosity
Supplementary Cementitious Materials
title_short Pore structure description of mortars containing ground granulated blast-furnace slag by mercury intrusion porosimetry and dynamic vapour sorption
title_full Pore structure description of mortars containing ground granulated blast-furnace slag by mercury intrusion porosimetry and dynamic vapour sorption
title_fullStr Pore structure description of mortars containing ground granulated blast-furnace slag by mercury intrusion porosimetry and dynamic vapour sorption
title_full_unstemmed Pore structure description of mortars containing ground granulated blast-furnace slag by mercury intrusion porosimetry and dynamic vapour sorption
title_sort Pore structure description of mortars containing ground granulated blast-furnace slag by mercury intrusion porosimetry and dynamic vapour sorption
dc.creator.none.fl_str_mv Alderete, Natalia Mariel
Villagrán Zaccardi, Yury Andrés
Mignon, Arn
Snoeck, Didier
de Belie, Nele
author Alderete, Natalia Mariel
author_facet Alderete, Natalia Mariel
Villagrán Zaccardi, Yury Andrés
Mignon, Arn
Snoeck, Didier
de Belie, Nele
author_role author
author2 Villagrán Zaccardi, Yury Andrés
Mignon, Arn
Snoeck, Didier
de Belie, Nele
author2_role author
author
author
author
dc.subject.none.fl_str_mv Dynamic Vapour Sorption
Ground Granulated Blast-Furnace Slag
Mercury Intrusion Porosimetry
Pore Connectivity
Porosity
Supplementary Cementitious Materials
topic Dynamic Vapour Sorption
Ground Granulated Blast-Furnace Slag
Mercury Intrusion Porosimetry
Pore Connectivity
Porosity
Supplementary Cementitious Materials
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.1
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The description of the pore structure is a key aspect when studying the durability of cement-based materials. Many techniques have been developed over the years in order to describe the actual complex microstructure of these materials. These techniques can be useful to determine the change in pore structure when supplementary cementitious materials are used and also track its evolution with time. This paper particularly aims to describe the changes in the pore structure of mortars with contents of 20, 40 and 60% of ground-granulated blast-furnace slag (GGBFS) in replacement of cement, at the ages of 28 and 90 days. Two widely accepted techniques were applied: dynamic water vapour sorption (DVS) and mercury intrusion porosimetry (MIP). For the data analysis from the DVS test, the Barret-Joyner-Halenda (BJH) model was used for pore size distribution assessment. Moreover, since the extent of this model does not cover the smallest range of pores, calculations with the Dubinin-Radushkevich (DR) model were also made. Results from the MIP test were used to characterize the threshold diameter, the smallest intrudable diameter, and the intrudable porosity. GGBFS replacement leads to a slight increase in porosity values at 28 days, especially seen in the DVS results for the pore size range of 0.002–0.05 µm. DVS results at 90 days for the mix with 40% slag replacement showed a marked reduction in porosity and a shift in pore structure to the finer pore size range when compared to the 28 day results. For all cases, the total porosity was found to be less influential on the test results than pore connectivity.
Fil: Alderete, Natalia Mariel. University of Ghent; Bélgica. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Área Tecnología del Hormigón; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Villagrán Zaccardi, Yury Andrés. University of Ghent; Bélgica. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Área Tecnología del Hormigón; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mignon, Arn. University of Ghent; Bélgica
Fil: Snoeck, Didier. University of Ghent; Bélgica
Fil: de Belie, Nele. University of Ghent; Bélgica
description The description of the pore structure is a key aspect when studying the durability of cement-based materials. Many techniques have been developed over the years in order to describe the actual complex microstructure of these materials. These techniques can be useful to determine the change in pore structure when supplementary cementitious materials are used and also track its evolution with time. This paper particularly aims to describe the changes in the pore structure of mortars with contents of 20, 40 and 60% of ground-granulated blast-furnace slag (GGBFS) in replacement of cement, at the ages of 28 and 90 days. Two widely accepted techniques were applied: dynamic water vapour sorption (DVS) and mercury intrusion porosimetry (MIP). For the data analysis from the DVS test, the Barret-Joyner-Halenda (BJH) model was used for pore size distribution assessment. Moreover, since the extent of this model does not cover the smallest range of pores, calculations with the Dubinin-Radushkevich (DR) model were also made. Results from the MIP test were used to characterize the threshold diameter, the smallest intrudable diameter, and the intrudable porosity. GGBFS replacement leads to a slight increase in porosity values at 28 days, especially seen in the DVS results for the pore size range of 0.002–0.05 µm. DVS results at 90 days for the mix with 40% slag replacement showed a marked reduction in porosity and a shift in pore structure to the finer pore size range when compared to the 28 day results. For all cases, the total porosity was found to be less influential on the test results than pore connectivity.
publishDate 2017
dc.date.none.fl_str_mv 2017-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/56430
Alderete, Natalia Mariel; Villagrán Zaccardi, Yury Andrés; Mignon, Arn; Snoeck, Didier; de Belie, Nele; Pore structure description of mortars containing ground granulated blast-furnace slag by mercury intrusion porosimetry and dynamic vapour sorption; Elsevier; Construction And Building Materials; 145; 8-2017; 157-165
0950-0618
CONICET Digital
CONICET
url http://hdl.handle.net/11336/56430
identifier_str_mv Alderete, Natalia Mariel; Villagrán Zaccardi, Yury Andrés; Mignon, Arn; Snoeck, Didier; de Belie, Nele; Pore structure description of mortars containing ground granulated blast-furnace slag by mercury intrusion porosimetry and dynamic vapour sorption; Elsevier; Construction And Building Materials; 145; 8-2017; 157-165
0950-0618
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.conbuildmat.2017.03.245
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0950061817306396
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269098750246912
score 13.13397