Extremophilic Acinetobacter strains from High-Altitude Lakes in Argentinean Puna: UV-B resistance and DNA repairing mechanisms involving photolyases.
- Autores
- Albarracín, Virginia Helena; Pathak, G.; Douki, T.; Cadet, J.; Borsarelli, Claudio Darío; Gärtner, W.; Farias, Maria Eugenia
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- High-Altitude Andean Lakes (HAAL) at the northwest of Argentina (from 3,000 to 6,000 masl) are extreme environments of biotechnological interest. A collection of 200 extremophilic strains which displayed multiple resistance profiles to diverse environmental stress: hipersalinity, high UV-B irradiation and arsenic. has been built. The aim of this work is to study the UV-resistance profile of four extremophilic strains from the genus Acinetobacter by partially characterize their photorepairing mechanisms upon UV-B DNA damage. In addition, we present Acinetobacter sp. Ver3 whose recent genome sequencing revealed the presence of interesting and novel photoreceptors such as photolyases.Acinetobacter by partially characterize their photorepairing mechanisms upon UV-B DNA damage. In addition, we present Acinetobacter sp. Ver3 whose recent genome sequencing revealed the presence of interesting and novel photoreceptors such as photolyases.Acinetobacter sp. Ver3 whose recent genome sequencing revealed the presence of interesting and novel photoreceptors such as photolyases. Acinetobacter spp. N40, Ver3, Ver5, Ver7 and sensitive strains Acinetobacter baumannii DSM 30007 and Acinetobacter jhonsonnii DSM 6963 where exposed to UV-B light (38 kJ) in liquid media. The control strains were not able to maintain their population after the UV-B exposure while Acinetobacter sp. Ver7 showed 100% survival after the irradiation, Acinetobacter sp. Ver5, 50% and Acinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. Acinetobacterspp. N40, Ver3, Ver5, Ver7 and sensitive strains Acinetobacter baumannii DSM 30007 and Acinetobacter jhonsonnii DSM 6963 where exposed to UV-B light (38 kJ) in liquid media. The control strains were not able to maintain their population after the UV-B exposure while Acinetobacter sp. Ver7 showed 100% survival after the irradiation, Acinetobacter sp. Ver5, 50% and Acinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter jhonsonnii DSM 6963 where exposed to UV-B light (38 kJ) in liquid media. The control strains were not able to maintain their population after the UV-B exposure while Acinetobacter sp. Ver7 showed 100% survival after the irradiation, Acinetobacter sp. Ver5, 50% and Acinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter sp. Ver7 showed 100% survival after the irradiation, Acinetobacter sp. Ver5, 50% and Acinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter sp. N40 also was able to increase their population thanks to the PR (60%). In contrast, A. baummanii was not able to recover after PR, while A. jhonsonnii recovered partially in a 15%. DR was not efficient for recovering the initial population for all strains. The most efficient strains to deplete TT-CPD and CT-CPD under PR were Acinetobacter sp. Ver3 and Ver7 with a reduction of 90% and 100% compared to the controls non-PR, respectively. Genome analyses (performed after pyro-sequencing and RAST annotation) revealed the presence of two different photolyase-coding sequences in Ver3. Upon BLAST analysis the nearest matches of one of them (PL1) was found to be the photolyase (ZP06727183) from A. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiA. baummanii was not able to recover after PR, while A. jhonsonnii recovered partially in a 15%. DR was not efficient for recovering the initial population for all strains. The most efficient strains to deplete TT-CPD and CT-CPD under PR were Acinetobacter sp. Ver3 and Ver7 with a reduction of 90% and 100% compared to the controls non-PR, respectively. Genome analyses (performed after pyro-sequencing and RAST annotation) revealed the presence of two different photolyase-coding sequences in Ver3. Upon BLAST analysis the nearest matches of one of them (PL1) was found to be the photolyase (ZP06727183) from A. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiwas not able to recover after PR, while A. jhonsonnii recovered partially in a 15%. DR was not efficient for recovering the initial population for all strains. The most efficient strains to deplete TT-CPD and CT-CPD under PR were Acinetobacter sp. Ver3 and Ver7 with a reduction of 90% and 100% compared to the controls non-PR, respectively. Genome analyses (performed after pyro-sequencing and RAST annotation) revealed the presence of two different photolyase-coding sequences in Ver3. Upon BLAST analysis the nearest matches of one of them (PL1) was found to be the photolyase (ZP06727183) from A. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiAcinetobacter sp. Ver3 and Ver7 with a reduction of 90% and 100% compared to the controls non-PR, respectively. Genome analyses (performed after pyro-sequencing and RAST annotation) revealed the presence of two different photolyase-coding sequences in Ver3. Upon BLAST analysis the nearest matches of one of them (PL1) was found to be the photolyase (ZP06727183) from A. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiA. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsonii SH046 (61% identity). In turn, the nearest matches for the second photolyase (PL2) were the deoxyribodipyrimidine photolyase-related protein (ZP06693260) from Acinetobacter sp. SH024 (70% identity) and the photolyase (ZP06066462) from A. junii SH205 (61% identity). The conserved domain architecture retrieval tool from the NCBI database revealed a different domain structure for the studied photolyases. Based on homology modeling, a strong three-dimensional similarity to the photolyase from E. coli (PDB 1DNPA) was observed for the PL1. Overexpression of the PL1-coding sequence revealed it can be functional and improve UV-B resistance profiles in E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.Acinetobacter sp. SH024 (70% identity) and the photolyase (ZP06066462) from A. junii SH205 (61% identity). The conserved domain architecture retrieval tool from the NCBI database revealed a different domain structure for the studied photolyases. Based on homology modeling, a strong three-dimensional similarity to the photolyase from E. coli (PDB 1DNPA) was observed for the PL1. Overexpression of the PL1-coding sequence revealed it can be functional and improve UV-B resistance profiles in E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.A. junii SH205 (61% identity). The conserved domain architecture retrieval tool from the NCBI database revealed a different domain structure for the studied photolyases. Based on homology modeling, a strong three-dimensional similarity to the photolyase from E. coli (PDB 1DNPA) was observed for the PL1. Overexpression of the PL1-coding sequence revealed it can be functional and improve UV-B resistance profiles in E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.E. coli (PDB 1DNPA) was observed for the PL1. Overexpression of the PL1-coding sequence revealed it can be functional and improve UV-B resistance profiles in E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.
Fil: Albarracín, Virginia Helena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Tecnológica Nacional; Argentina. Max-Planck Institute for Bioinorganic Chemistry; Alemania
Fil: Pathak, G.. Max-Planck Institute for Bioinorganic Chemistry; Alemania
Fil: Douki, T.. Laboratoire Lésions des Acides Nucléiques; Francia
Fil: Cadet, J.. Laboratoire Lésions des Acides Nucléiques; Francia
Fil: Borsarelli, Claudio Darío. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina
Fil: Gärtner, W.. Max-Planck Institute for Bioinorganic Chemistry; Alemania
Fil: Farias, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Primera Reunión de Fotobiólogos Moleculares Argentinos
La Plata
Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas
Universidad Nacional de La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - Materia
-
ACINETOBACTER
FOTOLIASAS
EXTREMÓFILOS
PUNA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/194887
Ver los metadatos del registro completo
id |
CONICETDig_9efb22a3452efbb2188e4e992e06afde |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/194887 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Extremophilic Acinetobacter strains from High-Altitude Lakes in Argentinean Puna: UV-B resistance and DNA repairing mechanisms involving photolyases.Albarracín, Virginia HelenaPathak, G.Douki, T.Cadet, J.Borsarelli, Claudio DaríoGärtner, W.Farias, Maria EugeniaACINETOBACTERFOTOLIASASEXTREMÓFILOSPUNAhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1High-Altitude Andean Lakes (HAAL) at the northwest of Argentina (from 3,000 to 6,000 masl) are extreme environments of biotechnological interest. A collection of 200 extremophilic strains which displayed multiple resistance profiles to diverse environmental stress: hipersalinity, high UV-B irradiation and arsenic. has been built. The aim of this work is to study the UV-resistance profile of four extremophilic strains from the genus Acinetobacter by partially characterize their photorepairing mechanisms upon UV-B DNA damage. In addition, we present Acinetobacter sp. Ver3 whose recent genome sequencing revealed the presence of interesting and novel photoreceptors such as photolyases.Acinetobacter by partially characterize their photorepairing mechanisms upon UV-B DNA damage. In addition, we present Acinetobacter sp. Ver3 whose recent genome sequencing revealed the presence of interesting and novel photoreceptors such as photolyases.Acinetobacter sp. Ver3 whose recent genome sequencing revealed the presence of interesting and novel photoreceptors such as photolyases. Acinetobacter spp. N40, Ver3, Ver5, Ver7 and sensitive strains Acinetobacter baumannii DSM 30007 and Acinetobacter jhonsonnii DSM 6963 where exposed to UV-B light (38 kJ) in liquid media. The control strains were not able to maintain their population after the UV-B exposure while Acinetobacter sp. Ver7 showed 100% survival after the irradiation, Acinetobacter sp. Ver5, 50% and Acinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. Acinetobacterspp. N40, Ver3, Ver5, Ver7 and sensitive strains Acinetobacter baumannii DSM 30007 and Acinetobacter jhonsonnii DSM 6963 where exposed to UV-B light (38 kJ) in liquid media. The control strains were not able to maintain their population after the UV-B exposure while Acinetobacter sp. Ver7 showed 100% survival after the irradiation, Acinetobacter sp. Ver5, 50% and Acinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter jhonsonnii DSM 6963 where exposed to UV-B light (38 kJ) in liquid media. The control strains were not able to maintain their population after the UV-B exposure while Acinetobacter sp. Ver7 showed 100% survival after the irradiation, Acinetobacter sp. Ver5, 50% and Acinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter sp. Ver7 showed 100% survival after the irradiation, Acinetobacter sp. Ver5, 50% and Acinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter sp. N40 also was able to increase their population thanks to the PR (60%). In contrast, A. baummanii was not able to recover after PR, while A. jhonsonnii recovered partially in a 15%. DR was not efficient for recovering the initial population for all strains. The most efficient strains to deplete TT-CPD and CT-CPD under PR were Acinetobacter sp. Ver3 and Ver7 with a reduction of 90% and 100% compared to the controls non-PR, respectively. Genome analyses (performed after pyro-sequencing and RAST annotation) revealed the presence of two different photolyase-coding sequences in Ver3. Upon BLAST analysis the nearest matches of one of them (PL1) was found to be the photolyase (ZP06727183) from A. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiA. baummanii was not able to recover after PR, while A. jhonsonnii recovered partially in a 15%. DR was not efficient for recovering the initial population for all strains. The most efficient strains to deplete TT-CPD and CT-CPD under PR were Acinetobacter sp. Ver3 and Ver7 with a reduction of 90% and 100% compared to the controls non-PR, respectively. Genome analyses (performed after pyro-sequencing and RAST annotation) revealed the presence of two different photolyase-coding sequences in Ver3. Upon BLAST analysis the nearest matches of one of them (PL1) was found to be the photolyase (ZP06727183) from A. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiwas not able to recover after PR, while A. jhonsonnii recovered partially in a 15%. DR was not efficient for recovering the initial population for all strains. The most efficient strains to deplete TT-CPD and CT-CPD under PR were Acinetobacter sp. Ver3 and Ver7 with a reduction of 90% and 100% compared to the controls non-PR, respectively. Genome analyses (performed after pyro-sequencing and RAST annotation) revealed the presence of two different photolyase-coding sequences in Ver3. Upon BLAST analysis the nearest matches of one of them (PL1) was found to be the photolyase (ZP06727183) from A. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiAcinetobacter sp. Ver3 and Ver7 with a reduction of 90% and 100% compared to the controls non-PR, respectively. Genome analyses (performed after pyro-sequencing and RAST annotation) revealed the presence of two different photolyase-coding sequences in Ver3. Upon BLAST analysis the nearest matches of one of them (PL1) was found to be the photolyase (ZP06727183) from A. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiA. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsonii SH046 (61% identity). In turn, the nearest matches for the second photolyase (PL2) were the deoxyribodipyrimidine photolyase-related protein (ZP06693260) from Acinetobacter sp. SH024 (70% identity) and the photolyase (ZP06066462) from A. junii SH205 (61% identity). The conserved domain architecture retrieval tool from the NCBI database revealed a different domain structure for the studied photolyases. Based on homology modeling, a strong three-dimensional similarity to the photolyase from E. coli (PDB 1DNPA) was observed for the PL1. Overexpression of the PL1-coding sequence revealed it can be functional and improve UV-B resistance profiles in E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.Acinetobacter sp. SH024 (70% identity) and the photolyase (ZP06066462) from A. junii SH205 (61% identity). The conserved domain architecture retrieval tool from the NCBI database revealed a different domain structure for the studied photolyases. Based on homology modeling, a strong three-dimensional similarity to the photolyase from E. coli (PDB 1DNPA) was observed for the PL1. Overexpression of the PL1-coding sequence revealed it can be functional and improve UV-B resistance profiles in E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.A. junii SH205 (61% identity). The conserved domain architecture retrieval tool from the NCBI database revealed a different domain structure for the studied photolyases. Based on homology modeling, a strong three-dimensional similarity to the photolyase from E. coli (PDB 1DNPA) was observed for the PL1. Overexpression of the PL1-coding sequence revealed it can be functional and improve UV-B resistance profiles in E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.E. coli (PDB 1DNPA) was observed for the PL1. Overexpression of the PL1-coding sequence revealed it can be functional and improve UV-B resistance profiles in E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.Fil: Albarracín, Virginia Helena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Tecnológica Nacional; Argentina. Max-Planck Institute for Bioinorganic Chemistry; AlemaniaFil: Pathak, G.. Max-Planck Institute for Bioinorganic Chemistry; AlemaniaFil: Douki, T.. Laboratoire Lésions des Acides Nucléiques; FranciaFil: Cadet, J.. Laboratoire Lésions des Acides Nucléiques; FranciaFil: Borsarelli, Claudio Darío. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Gärtner, W.. Max-Planck Institute for Bioinorganic Chemistry; AlemaniaFil: Farias, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaPrimera Reunión de Fotobiólogos Moleculares ArgentinosLa PlataArgentinaConsejo Nacional de Investigaciones Científicas y TécnicasUniversidad Nacional de La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasConsejo Nacional de Investigaciones Científicas y Técnicas; Universidad Nacional de La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectEncuentroBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/194887Extremophilic Acinetobacter strains from High-Altitude Lakes in Argentinean Puna: UV-B resistance and DNA repairing mechanisms involving photolyases.; Primera Reunión de Fotobiólogos Moleculares Argentinos; La Plata; Argentina; 2011; 9-9CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://grupoargentinodefotobiologia.info/site/site/grupar/pluginfile.php/105/mod_label/intro/IGRAFOB-LIBRO.pdfNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:35Zoai:ri.conicet.gov.ar:11336/194887instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:35.891CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Extremophilic Acinetobacter strains from High-Altitude Lakes in Argentinean Puna: UV-B resistance and DNA repairing mechanisms involving photolyases. |
title |
Extremophilic Acinetobacter strains from High-Altitude Lakes in Argentinean Puna: UV-B resistance and DNA repairing mechanisms involving photolyases. |
spellingShingle |
Extremophilic Acinetobacter strains from High-Altitude Lakes in Argentinean Puna: UV-B resistance and DNA repairing mechanisms involving photolyases. Albarracín, Virginia Helena ACINETOBACTER FOTOLIASAS EXTREMÓFILOS PUNA |
title_short |
Extremophilic Acinetobacter strains from High-Altitude Lakes in Argentinean Puna: UV-B resistance and DNA repairing mechanisms involving photolyases. |
title_full |
Extremophilic Acinetobacter strains from High-Altitude Lakes in Argentinean Puna: UV-B resistance and DNA repairing mechanisms involving photolyases. |
title_fullStr |
Extremophilic Acinetobacter strains from High-Altitude Lakes in Argentinean Puna: UV-B resistance and DNA repairing mechanisms involving photolyases. |
title_full_unstemmed |
Extremophilic Acinetobacter strains from High-Altitude Lakes in Argentinean Puna: UV-B resistance and DNA repairing mechanisms involving photolyases. |
title_sort |
Extremophilic Acinetobacter strains from High-Altitude Lakes in Argentinean Puna: UV-B resistance and DNA repairing mechanisms involving photolyases. |
dc.creator.none.fl_str_mv |
Albarracín, Virginia Helena Pathak, G. Douki, T. Cadet, J. Borsarelli, Claudio Darío Gärtner, W. Farias, Maria Eugenia |
author |
Albarracín, Virginia Helena |
author_facet |
Albarracín, Virginia Helena Pathak, G. Douki, T. Cadet, J. Borsarelli, Claudio Darío Gärtner, W. Farias, Maria Eugenia |
author_role |
author |
author2 |
Pathak, G. Douki, T. Cadet, J. Borsarelli, Claudio Darío Gärtner, W. Farias, Maria Eugenia |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
ACINETOBACTER FOTOLIASAS EXTREMÓFILOS PUNA |
topic |
ACINETOBACTER FOTOLIASAS EXTREMÓFILOS PUNA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
High-Altitude Andean Lakes (HAAL) at the northwest of Argentina (from 3,000 to 6,000 masl) are extreme environments of biotechnological interest. A collection of 200 extremophilic strains which displayed multiple resistance profiles to diverse environmental stress: hipersalinity, high UV-B irradiation and arsenic. has been built. The aim of this work is to study the UV-resistance profile of four extremophilic strains from the genus Acinetobacter by partially characterize their photorepairing mechanisms upon UV-B DNA damage. In addition, we present Acinetobacter sp. Ver3 whose recent genome sequencing revealed the presence of interesting and novel photoreceptors such as photolyases.Acinetobacter by partially characterize their photorepairing mechanisms upon UV-B DNA damage. In addition, we present Acinetobacter sp. Ver3 whose recent genome sequencing revealed the presence of interesting and novel photoreceptors such as photolyases.Acinetobacter sp. Ver3 whose recent genome sequencing revealed the presence of interesting and novel photoreceptors such as photolyases. Acinetobacter spp. N40, Ver3, Ver5, Ver7 and sensitive strains Acinetobacter baumannii DSM 30007 and Acinetobacter jhonsonnii DSM 6963 where exposed to UV-B light (38 kJ) in liquid media. The control strains were not able to maintain their population after the UV-B exposure while Acinetobacter sp. Ver7 showed 100% survival after the irradiation, Acinetobacter sp. Ver5, 50% and Acinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. Acinetobacterspp. N40, Ver3, Ver5, Ver7 and sensitive strains Acinetobacter baumannii DSM 30007 and Acinetobacter jhonsonnii DSM 6963 where exposed to UV-B light (38 kJ) in liquid media. The control strains were not able to maintain their population after the UV-B exposure while Acinetobacter sp. Ver7 showed 100% survival after the irradiation, Acinetobacter sp. Ver5, 50% and Acinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter jhonsonnii DSM 6963 where exposed to UV-B light (38 kJ) in liquid media. The control strains were not able to maintain their population after the UV-B exposure while Acinetobacter sp. Ver7 showed 100% survival after the irradiation, Acinetobacter sp. Ver5, 50% and Acinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter sp. Ver7 showed 100% survival after the irradiation, Acinetobacter sp. Ver5, 50% and Acinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter sp. N40 also was able to increase their population thanks to the PR (60%). In contrast, A. baummanii was not able to recover after PR, while A. jhonsonnii recovered partially in a 15%. DR was not efficient for recovering the initial population for all strains. The most efficient strains to deplete TT-CPD and CT-CPD under PR were Acinetobacter sp. Ver3 and Ver7 with a reduction of 90% and 100% compared to the controls non-PR, respectively. Genome analyses (performed after pyro-sequencing and RAST annotation) revealed the presence of two different photolyase-coding sequences in Ver3. Upon BLAST analysis the nearest matches of one of them (PL1) was found to be the photolyase (ZP06727183) from A. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiA. baummanii was not able to recover after PR, while A. jhonsonnii recovered partially in a 15%. DR was not efficient for recovering the initial population for all strains. The most efficient strains to deplete TT-CPD and CT-CPD under PR were Acinetobacter sp. Ver3 and Ver7 with a reduction of 90% and 100% compared to the controls non-PR, respectively. Genome analyses (performed after pyro-sequencing and RAST annotation) revealed the presence of two different photolyase-coding sequences in Ver3. Upon BLAST analysis the nearest matches of one of them (PL1) was found to be the photolyase (ZP06727183) from A. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiwas not able to recover after PR, while A. jhonsonnii recovered partially in a 15%. DR was not efficient for recovering the initial population for all strains. The most efficient strains to deplete TT-CPD and CT-CPD under PR were Acinetobacter sp. Ver3 and Ver7 with a reduction of 90% and 100% compared to the controls non-PR, respectively. Genome analyses (performed after pyro-sequencing and RAST annotation) revealed the presence of two different photolyase-coding sequences in Ver3. Upon BLAST analysis the nearest matches of one of them (PL1) was found to be the photolyase (ZP06727183) from A. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiAcinetobacter sp. Ver3 and Ver7 with a reduction of 90% and 100% compared to the controls non-PR, respectively. Genome analyses (performed after pyro-sequencing and RAST annotation) revealed the presence of two different photolyase-coding sequences in Ver3. Upon BLAST analysis the nearest matches of one of them (PL1) was found to be the photolyase (ZP06727183) from A. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiA. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsonii SH046 (61% identity). In turn, the nearest matches for the second photolyase (PL2) were the deoxyribodipyrimidine photolyase-related protein (ZP06693260) from Acinetobacter sp. SH024 (70% identity) and the photolyase (ZP06066462) from A. junii SH205 (61% identity). The conserved domain architecture retrieval tool from the NCBI database revealed a different domain structure for the studied photolyases. Based on homology modeling, a strong three-dimensional similarity to the photolyase from E. coli (PDB 1DNPA) was observed for the PL1. Overexpression of the PL1-coding sequence revealed it can be functional and improve UV-B resistance profiles in E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.Acinetobacter sp. SH024 (70% identity) and the photolyase (ZP06066462) from A. junii SH205 (61% identity). The conserved domain architecture retrieval tool from the NCBI database revealed a different domain structure for the studied photolyases. Based on homology modeling, a strong three-dimensional similarity to the photolyase from E. coli (PDB 1DNPA) was observed for the PL1. Overexpression of the PL1-coding sequence revealed it can be functional and improve UV-B resistance profiles in E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.A. junii SH205 (61% identity). The conserved domain architecture retrieval tool from the NCBI database revealed a different domain structure for the studied photolyases. Based on homology modeling, a strong three-dimensional similarity to the photolyase from E. coli (PDB 1DNPA) was observed for the PL1. Overexpression of the PL1-coding sequence revealed it can be functional and improve UV-B resistance profiles in E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.E. coli (PDB 1DNPA) was observed for the PL1. Overexpression of the PL1-coding sequence revealed it can be functional and improve UV-B resistance profiles in E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.E. coli cells. Functional characterization of the purified photolyase proteins is ongoing. Fil: Albarracín, Virginia Helena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Tecnológica Nacional; Argentina. Max-Planck Institute for Bioinorganic Chemistry; Alemania Fil: Pathak, G.. Max-Planck Institute for Bioinorganic Chemistry; Alemania Fil: Douki, T.. Laboratoire Lésions des Acides Nucléiques; Francia Fil: Cadet, J.. Laboratoire Lésions des Acides Nucléiques; Francia Fil: Borsarelli, Claudio Darío. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina Fil: Gärtner, W.. Max-Planck Institute for Bioinorganic Chemistry; Alemania Fil: Farias, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina Primera Reunión de Fotobiólogos Moleculares Argentinos La Plata Argentina Consejo Nacional de Investigaciones Científicas y Técnicas Universidad Nacional de La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas |
description |
High-Altitude Andean Lakes (HAAL) at the northwest of Argentina (from 3,000 to 6,000 masl) are extreme environments of biotechnological interest. A collection of 200 extremophilic strains which displayed multiple resistance profiles to diverse environmental stress: hipersalinity, high UV-B irradiation and arsenic. has been built. The aim of this work is to study the UV-resistance profile of four extremophilic strains from the genus Acinetobacter by partially characterize their photorepairing mechanisms upon UV-B DNA damage. In addition, we present Acinetobacter sp. Ver3 whose recent genome sequencing revealed the presence of interesting and novel photoreceptors such as photolyases.Acinetobacter by partially characterize their photorepairing mechanisms upon UV-B DNA damage. In addition, we present Acinetobacter sp. Ver3 whose recent genome sequencing revealed the presence of interesting and novel photoreceptors such as photolyases.Acinetobacter sp. Ver3 whose recent genome sequencing revealed the presence of interesting and novel photoreceptors such as photolyases. Acinetobacter spp. N40, Ver3, Ver5, Ver7 and sensitive strains Acinetobacter baumannii DSM 30007 and Acinetobacter jhonsonnii DSM 6963 where exposed to UV-B light (38 kJ) in liquid media. The control strains were not able to maintain their population after the UV-B exposure while Acinetobacter sp. Ver7 showed 100% survival after the irradiation, Acinetobacter sp. Ver5, 50% and Acinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. Acinetobacterspp. N40, Ver3, Ver5, Ver7 and sensitive strains Acinetobacter baumannii DSM 30007 and Acinetobacter jhonsonnii DSM 6963 where exposed to UV-B light (38 kJ) in liquid media. The control strains were not able to maintain their population after the UV-B exposure while Acinetobacter sp. Ver7 showed 100% survival after the irradiation, Acinetobacter sp. Ver5, 50% and Acinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter jhonsonnii DSM 6963 where exposed to UV-B light (38 kJ) in liquid media. The control strains were not able to maintain their population after the UV-B exposure while Acinetobacter sp. Ver7 showed 100% survival after the irradiation, Acinetobacter sp. Ver5, 50% and Acinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter sp. Ver7 showed 100% survival after the irradiation, Acinetobacter sp. Ver5, 50% and Acinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter sp. Ver3 and N40 20% and 1% respectively. After the DNA damage, the strains were exposed to light (PR) and dark repair (DR) during 2 h and DNA photoproducts in total genomic DNA after each treatment was measured using HPLC-MS/MS. Acinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter sp. Ver3 and Ver5 were able to completely recover their initial population after PR. AcinetobacterAcinetobacter sp. N40 also was able to increase their population thanks to the PR (60%). In contrast, A. baummanii was not able to recover after PR, while A. jhonsonnii recovered partially in a 15%. DR was not efficient for recovering the initial population for all strains. The most efficient strains to deplete TT-CPD and CT-CPD under PR were Acinetobacter sp. Ver3 and Ver7 with a reduction of 90% and 100% compared to the controls non-PR, respectively. Genome analyses (performed after pyro-sequencing and RAST annotation) revealed the presence of two different photolyase-coding sequences in Ver3. Upon BLAST analysis the nearest matches of one of them (PL1) was found to be the photolyase (ZP06727183) from A. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiA. baummanii was not able to recover after PR, while A. jhonsonnii recovered partially in a 15%. DR was not efficient for recovering the initial population for all strains. The most efficient strains to deplete TT-CPD and CT-CPD under PR were Acinetobacter sp. Ver3 and Ver7 with a reduction of 90% and 100% compared to the controls non-PR, respectively. Genome analyses (performed after pyro-sequencing and RAST annotation) revealed the presence of two different photolyase-coding sequences in Ver3. Upon BLAST analysis the nearest matches of one of them (PL1) was found to be the photolyase (ZP06727183) from A. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiwas not able to recover after PR, while A. jhonsonnii recovered partially in a 15%. DR was not efficient for recovering the initial population for all strains. The most efficient strains to deplete TT-CPD and CT-CPD under PR were Acinetobacter sp. Ver3 and Ver7 with a reduction of 90% and 100% compared to the controls non-PR, respectively. Genome analyses (performed after pyro-sequencing and RAST annotation) revealed the presence of two different photolyase-coding sequences in Ver3. Upon BLAST analysis the nearest matches of one of them (PL1) was found to be the photolyase (ZP06727183) from A. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiAcinetobacter sp. Ver3 and Ver7 with a reduction of 90% and 100% compared to the controls non-PR, respectively. Genome analyses (performed after pyro-sequencing and RAST annotation) revealed the presence of two different photolyase-coding sequences in Ver3. Upon BLAST analysis the nearest matches of one of them (PL1) was found to be the photolyase (ZP06727183) from A. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiA. haemolyticus ATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsoniiATCC 19194 (62% identity) and the photolyase (ZP06062937) from A. johnsonii SH046 (61% identity). In turn, the nearest matches for the second photolyase (PL2) were the deoxyribodipyrimidine photolyase-related protein (ZP06693260) from Acinetobacter sp. SH024 (70% identity) and the photolyase (ZP06066462) from A. junii SH205 (61% identity). The conserved domain architecture retrieval tool from the NCBI database revealed a different domain structure for the studied photolyases. Based on homology modeling, a strong three-dimensional similarity to the photolyase from E. coli (PDB 1DNPA) was observed for the PL1. Overexpression of the PL1-coding sequence revealed it can be functional and improve UV-B resistance profiles in E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.Acinetobacter sp. SH024 (70% identity) and the photolyase (ZP06066462) from A. junii SH205 (61% identity). The conserved domain architecture retrieval tool from the NCBI database revealed a different domain structure for the studied photolyases. Based on homology modeling, a strong three-dimensional similarity to the photolyase from E. coli (PDB 1DNPA) was observed for the PL1. Overexpression of the PL1-coding sequence revealed it can be functional and improve UV-B resistance profiles in E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.A. junii SH205 (61% identity). The conserved domain architecture retrieval tool from the NCBI database revealed a different domain structure for the studied photolyases. Based on homology modeling, a strong three-dimensional similarity to the photolyase from E. coli (PDB 1DNPA) was observed for the PL1. Overexpression of the PL1-coding sequence revealed it can be functional and improve UV-B resistance profiles in E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.E. coli (PDB 1DNPA) was observed for the PL1. Overexpression of the PL1-coding sequence revealed it can be functional and improve UV-B resistance profiles in E. coli cells. Functional characterization of the purified photolyase proteins is ongoing.E. coli cells. Functional characterization of the purified photolyase proteins is ongoing. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Encuentro Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/194887 Extremophilic Acinetobacter strains from High-Altitude Lakes in Argentinean Puna: UV-B resistance and DNA repairing mechanisms involving photolyases.; Primera Reunión de Fotobiólogos Moleculares Argentinos; La Plata; Argentina; 2011; 9-9 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/194887 |
identifier_str_mv |
Extremophilic Acinetobacter strains from High-Altitude Lakes in Argentinean Puna: UV-B resistance and DNA repairing mechanisms involving photolyases.; Primera Reunión de Fotobiólogos Moleculares Argentinos; La Plata; Argentina; 2011; 9-9 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://grupoargentinodefotobiologia.info/site/site/grupar/pluginfile.php/105/mod_label/intro/IGRAFOB-LIBRO.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Consejo Nacional de Investigaciones Científicas y Técnicas; Universidad Nacional de La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas |
publisher.none.fl_str_mv |
Consejo Nacional de Investigaciones Científicas y Técnicas; Universidad Nacional de La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614075321942016 |
score |
13.070432 |