Canonical transient receptor potential 6 channel deficiency promotes smooth muscle cells dedifferentiation and increased proliferation after arterial injury

Autores
Smith, Andrew H.; Priya, Bhanu Priya; Driscoll, Erin C.; Chaudhuri, Pinaki; Birnbaumer, Lutz; Rosenbaum, Michael A.; Graham, Linda M.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Objective Previous studies showed the benefit of canonical transient receptor potential 6 (TRPC6) channel deficiency in promoting endothelial healing of arterial injuries in hypercholesterolemic animals. Long-term studies utilizing a carotid wire-injury model were undertaken in wild-type (WT) and TRPC6-/- mice to determine the effects of TRPC6 on phenotypic modulation of vascular smooth muscle cells (SMC) and neointimal hyperplasia. We hypothesized that TRPC6 was essential in the maintenance or reexpression of a differentiated SMC phenotype and minimized luminal stenosis following arterial injury. Methods The common carotid arteries (CCA) of WT and TRPC6-/- mice were evaluated at baseline and 4 weeks after wire injury. At baseline, CCA of TRPC6-/- mice had reduced staining of MYH11 and SM22, fewer elastin lamina, luminal dilation, and wall thinning. After carotid wire injury, TRPC6-/- mice developed significantly more pronounced luminal stenosis compared with WT mice. Injured TRPC6-/- CCA demonstrated increased medial/intimal cell number and active cell proliferation when compared with WT CCA. Immunohistochemistry suggested that expression of contractile biomarkers in medial SMC were essentially at baseline levels in WT CCA at 28 days after wire injury. By contrast, at 28 days after injury medial SMC from TRPC6-/- CCA showed a significant decrease in the expression of contractile biomarkers relative to baseline levels. To assess the role of TRPC6 in systemic arterial SMC phenotype modulation, SMC were harvested from thoracic aortae of WT and TRPC6-/- mice and were characterized. TRPC6-/- SMC showed enhanced proliferation and migration in response to serum stimulation. Expression of contractile phenotype biomarkers, MYH11 and SM22, was attenuated in TRPC6-/- SMC. siRNA-mediated TRPC6 deficiency inhibited contractile biomarker expression in a mouse SMC line. Conclusions These results suggest that TRPC6 contributes to the restoration or maintenance of arterial SMC contractile phenotype following injury. Understanding the role of TRPC6 in phenotypic modulation may lead to mechanism-based therapies for attenuation of IH. Clinical Relevance After endovascular intervention and open vascular surgery, vascular smooth muscle cells (VSMC) undergo a coordinated reprogramming of gene expression to facilitate arterial healing. Down regulation of VSMC-specific contractile biomarkers (eg, SM22 and MYH11) and induction of pathways that promote cell proliferation, migration, and matrix synthesis are hallmarks of this phenotypic switch. Dysregulated phenotypic switching leads to the development of neointimal hyperplasia and vascular restenosis. Identifying pathways that regulate or constrain VSMC phenotypic modulation, therefore, has the potential to decrease neointimal hyperplasia and improve outcomes after vascular intervention. In this study, we demonstrate that depletion of the non-voltage-gated cation channel TRPC6 promotes phenotypic switching and loss of contractile biomarkers in systemic arterial VSMC. TRPC6-/- mice developed significantly more pronounced luminal stenosis compared with wild-type mice after carotid wire injury. These results suggest that TRPC6 contributes to the restoration or maintenance of contractile phenotype in VSMC after injury. Understanding the role of TRPC6 in phenotypic switching may lead to mechanism-based therapies to mitigate restenosis.
Fil: Smith, Andrew H.. National Institute Of Environmental Health Sciences; Estados Unidos
Fil: Priya, Bhanu Priya. National Institute Of Environmental Health Sciences; Estados Unidos
Fil: Driscoll, Erin C.. National Institute Of Environmental Health Sciences; Estados Unidos
Fil: Chaudhuri, Pinaki. National Institute Of Environmental Health Sciences; Estados Unidos
Fil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; Argentina
Fil: Rosenbaum, Michael A.. National Institute Of Environmental Health Sciences; Estados Unidos
Fil: Graham, Linda M.. National Institute Of Environmental Health Sciences; Estados Unidos
Materia
CAROTID INJURY; INTIMAL HYPERPLASIA; PHENOTYPIC MODULATION; SMOOTH MUSCLE CELLS; TRPC6.
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/141716

id CONICETDig_9de98d5e0d2d183d960d1d9595499bda
oai_identifier_str oai:ri.conicet.gov.ar:11336/141716
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Canonical transient receptor potential 6 channel deficiency promotes smooth muscle cells dedifferentiation and increased proliferation after arterial injurySmith, Andrew H.Priya, Bhanu PriyaDriscoll, Erin C.Chaudhuri, PinakiBirnbaumer, LutzRosenbaum, Michael A.Graham, Linda M.CAROTID INJURY; INTIMAL HYPERPLASIA; PHENOTYPIC MODULATION; SMOOTH MUSCLE CELLS; TRPC6.https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Objective Previous studies showed the benefit of canonical transient receptor potential 6 (TRPC6) channel deficiency in promoting endothelial healing of arterial injuries in hypercholesterolemic animals. Long-term studies utilizing a carotid wire-injury model were undertaken in wild-type (WT) and TRPC6-/- mice to determine the effects of TRPC6 on phenotypic modulation of vascular smooth muscle cells (SMC) and neointimal hyperplasia. We hypothesized that TRPC6 was essential in the maintenance or reexpression of a differentiated SMC phenotype and minimized luminal stenosis following arterial injury. Methods The common carotid arteries (CCA) of WT and TRPC6-/- mice were evaluated at baseline and 4 weeks after wire injury. At baseline, CCA of TRPC6-/- mice had reduced staining of MYH11 and SM22, fewer elastin lamina, luminal dilation, and wall thinning. After carotid wire injury, TRPC6-/- mice developed significantly more pronounced luminal stenosis compared with WT mice. Injured TRPC6-/- CCA demonstrated increased medial/intimal cell number and active cell proliferation when compared with WT CCA. Immunohistochemistry suggested that expression of contractile biomarkers in medial SMC were essentially at baseline levels in WT CCA at 28 days after wire injury. By contrast, at 28 days after injury medial SMC from TRPC6-/- CCA showed a significant decrease in the expression of contractile biomarkers relative to baseline levels. To assess the role of TRPC6 in systemic arterial SMC phenotype modulation, SMC were harvested from thoracic aortae of WT and TRPC6-/- mice and were characterized. TRPC6-/- SMC showed enhanced proliferation and migration in response to serum stimulation. Expression of contractile phenotype biomarkers, MYH11 and SM22, was attenuated in TRPC6-/- SMC. siRNA-mediated TRPC6 deficiency inhibited contractile biomarker expression in a mouse SMC line. Conclusions These results suggest that TRPC6 contributes to the restoration or maintenance of arterial SMC contractile phenotype following injury. Understanding the role of TRPC6 in phenotypic modulation may lead to mechanism-based therapies for attenuation of IH. Clinical Relevance After endovascular intervention and open vascular surgery, vascular smooth muscle cells (VSMC) undergo a coordinated reprogramming of gene expression to facilitate arterial healing. Down regulation of VSMC-specific contractile biomarkers (eg, SM22 and MYH11) and induction of pathways that promote cell proliferation, migration, and matrix synthesis are hallmarks of this phenotypic switch. Dysregulated phenotypic switching leads to the development of neointimal hyperplasia and vascular restenosis. Identifying pathways that regulate or constrain VSMC phenotypic modulation, therefore, has the potential to decrease neointimal hyperplasia and improve outcomes after vascular intervention. In this study, we demonstrate that depletion of the non-voltage-gated cation channel TRPC6 promotes phenotypic switching and loss of contractile biomarkers in systemic arterial VSMC. TRPC6-/- mice developed significantly more pronounced luminal stenosis compared with wild-type mice after carotid wire injury. These results suggest that TRPC6 contributes to the restoration or maintenance of contractile phenotype in VSMC after injury. Understanding the role of TRPC6 in phenotypic switching may lead to mechanism-based therapies to mitigate restenosis.Fil: Smith, Andrew H.. National Institute Of Environmental Health Sciences; Estados UnidosFil: Priya, Bhanu Priya. National Institute Of Environmental Health Sciences; Estados UnidosFil: Driscoll, Erin C.. National Institute Of Environmental Health Sciences; Estados UnidosFil: Chaudhuri, Pinaki. National Institute Of Environmental Health Sciences; Estados UnidosFil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Rosenbaum, Michael A.. National Institute Of Environmental Health Sciences; Estados UnidosFil: Graham, Linda M.. National Institute Of Environmental Health Sciences; Estados UnidosElsevier2020-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/141716Smith, Andrew H.; Priya, Bhanu Priya; Driscoll, Erin C.; Chaudhuri, Pinaki; Birnbaumer, Lutz; et al.; Canonical transient receptor potential 6 channel deficiency promotes smooth muscle cells dedifferentiation and increased proliferation after arterial injury; Elsevier; Vascular Science; 1; 7-2020; 136-1502666-3503CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2666350320300134info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jvssci.2020.07.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:12Zoai:ri.conicet.gov.ar:11336/141716instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:12.556CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Canonical transient receptor potential 6 channel deficiency promotes smooth muscle cells dedifferentiation and increased proliferation after arterial injury
title Canonical transient receptor potential 6 channel deficiency promotes smooth muscle cells dedifferentiation and increased proliferation after arterial injury
spellingShingle Canonical transient receptor potential 6 channel deficiency promotes smooth muscle cells dedifferentiation and increased proliferation after arterial injury
Smith, Andrew H.
CAROTID INJURY; INTIMAL HYPERPLASIA; PHENOTYPIC MODULATION; SMOOTH MUSCLE CELLS; TRPC6.
title_short Canonical transient receptor potential 6 channel deficiency promotes smooth muscle cells dedifferentiation and increased proliferation after arterial injury
title_full Canonical transient receptor potential 6 channel deficiency promotes smooth muscle cells dedifferentiation and increased proliferation after arterial injury
title_fullStr Canonical transient receptor potential 6 channel deficiency promotes smooth muscle cells dedifferentiation and increased proliferation after arterial injury
title_full_unstemmed Canonical transient receptor potential 6 channel deficiency promotes smooth muscle cells dedifferentiation and increased proliferation after arterial injury
title_sort Canonical transient receptor potential 6 channel deficiency promotes smooth muscle cells dedifferentiation and increased proliferation after arterial injury
dc.creator.none.fl_str_mv Smith, Andrew H.
Priya, Bhanu Priya
Driscoll, Erin C.
Chaudhuri, Pinaki
Birnbaumer, Lutz
Rosenbaum, Michael A.
Graham, Linda M.
author Smith, Andrew H.
author_facet Smith, Andrew H.
Priya, Bhanu Priya
Driscoll, Erin C.
Chaudhuri, Pinaki
Birnbaumer, Lutz
Rosenbaum, Michael A.
Graham, Linda M.
author_role author
author2 Priya, Bhanu Priya
Driscoll, Erin C.
Chaudhuri, Pinaki
Birnbaumer, Lutz
Rosenbaum, Michael A.
Graham, Linda M.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv CAROTID INJURY; INTIMAL HYPERPLASIA; PHENOTYPIC MODULATION; SMOOTH MUSCLE CELLS; TRPC6.
topic CAROTID INJURY; INTIMAL HYPERPLASIA; PHENOTYPIC MODULATION; SMOOTH MUSCLE CELLS; TRPC6.
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Objective Previous studies showed the benefit of canonical transient receptor potential 6 (TRPC6) channel deficiency in promoting endothelial healing of arterial injuries in hypercholesterolemic animals. Long-term studies utilizing a carotid wire-injury model were undertaken in wild-type (WT) and TRPC6-/- mice to determine the effects of TRPC6 on phenotypic modulation of vascular smooth muscle cells (SMC) and neointimal hyperplasia. We hypothesized that TRPC6 was essential in the maintenance or reexpression of a differentiated SMC phenotype and minimized luminal stenosis following arterial injury. Methods The common carotid arteries (CCA) of WT and TRPC6-/- mice were evaluated at baseline and 4 weeks after wire injury. At baseline, CCA of TRPC6-/- mice had reduced staining of MYH11 and SM22, fewer elastin lamina, luminal dilation, and wall thinning. After carotid wire injury, TRPC6-/- mice developed significantly more pronounced luminal stenosis compared with WT mice. Injured TRPC6-/- CCA demonstrated increased medial/intimal cell number and active cell proliferation when compared with WT CCA. Immunohistochemistry suggested that expression of contractile biomarkers in medial SMC were essentially at baseline levels in WT CCA at 28 days after wire injury. By contrast, at 28 days after injury medial SMC from TRPC6-/- CCA showed a significant decrease in the expression of contractile biomarkers relative to baseline levels. To assess the role of TRPC6 in systemic arterial SMC phenotype modulation, SMC were harvested from thoracic aortae of WT and TRPC6-/- mice and were characterized. TRPC6-/- SMC showed enhanced proliferation and migration in response to serum stimulation. Expression of contractile phenotype biomarkers, MYH11 and SM22, was attenuated in TRPC6-/- SMC. siRNA-mediated TRPC6 deficiency inhibited contractile biomarker expression in a mouse SMC line. Conclusions These results suggest that TRPC6 contributes to the restoration or maintenance of arterial SMC contractile phenotype following injury. Understanding the role of TRPC6 in phenotypic modulation may lead to mechanism-based therapies for attenuation of IH. Clinical Relevance After endovascular intervention and open vascular surgery, vascular smooth muscle cells (VSMC) undergo a coordinated reprogramming of gene expression to facilitate arterial healing. Down regulation of VSMC-specific contractile biomarkers (eg, SM22 and MYH11) and induction of pathways that promote cell proliferation, migration, and matrix synthesis are hallmarks of this phenotypic switch. Dysregulated phenotypic switching leads to the development of neointimal hyperplasia and vascular restenosis. Identifying pathways that regulate or constrain VSMC phenotypic modulation, therefore, has the potential to decrease neointimal hyperplasia and improve outcomes after vascular intervention. In this study, we demonstrate that depletion of the non-voltage-gated cation channel TRPC6 promotes phenotypic switching and loss of contractile biomarkers in systemic arterial VSMC. TRPC6-/- mice developed significantly more pronounced luminal stenosis compared with wild-type mice after carotid wire injury. These results suggest that TRPC6 contributes to the restoration or maintenance of contractile phenotype in VSMC after injury. Understanding the role of TRPC6 in phenotypic switching may lead to mechanism-based therapies to mitigate restenosis.
Fil: Smith, Andrew H.. National Institute Of Environmental Health Sciences; Estados Unidos
Fil: Priya, Bhanu Priya. National Institute Of Environmental Health Sciences; Estados Unidos
Fil: Driscoll, Erin C.. National Institute Of Environmental Health Sciences; Estados Unidos
Fil: Chaudhuri, Pinaki. National Institute Of Environmental Health Sciences; Estados Unidos
Fil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; Argentina
Fil: Rosenbaum, Michael A.. National Institute Of Environmental Health Sciences; Estados Unidos
Fil: Graham, Linda M.. National Institute Of Environmental Health Sciences; Estados Unidos
description Objective Previous studies showed the benefit of canonical transient receptor potential 6 (TRPC6) channel deficiency in promoting endothelial healing of arterial injuries in hypercholesterolemic animals. Long-term studies utilizing a carotid wire-injury model were undertaken in wild-type (WT) and TRPC6-/- mice to determine the effects of TRPC6 on phenotypic modulation of vascular smooth muscle cells (SMC) and neointimal hyperplasia. We hypothesized that TRPC6 was essential in the maintenance or reexpression of a differentiated SMC phenotype and minimized luminal stenosis following arterial injury. Methods The common carotid arteries (CCA) of WT and TRPC6-/- mice were evaluated at baseline and 4 weeks after wire injury. At baseline, CCA of TRPC6-/- mice had reduced staining of MYH11 and SM22, fewer elastin lamina, luminal dilation, and wall thinning. After carotid wire injury, TRPC6-/- mice developed significantly more pronounced luminal stenosis compared with WT mice. Injured TRPC6-/- CCA demonstrated increased medial/intimal cell number and active cell proliferation when compared with WT CCA. Immunohistochemistry suggested that expression of contractile biomarkers in medial SMC were essentially at baseline levels in WT CCA at 28 days after wire injury. By contrast, at 28 days after injury medial SMC from TRPC6-/- CCA showed a significant decrease in the expression of contractile biomarkers relative to baseline levels. To assess the role of TRPC6 in systemic arterial SMC phenotype modulation, SMC were harvested from thoracic aortae of WT and TRPC6-/- mice and were characterized. TRPC6-/- SMC showed enhanced proliferation and migration in response to serum stimulation. Expression of contractile phenotype biomarkers, MYH11 and SM22, was attenuated in TRPC6-/- SMC. siRNA-mediated TRPC6 deficiency inhibited contractile biomarker expression in a mouse SMC line. Conclusions These results suggest that TRPC6 contributes to the restoration or maintenance of arterial SMC contractile phenotype following injury. Understanding the role of TRPC6 in phenotypic modulation may lead to mechanism-based therapies for attenuation of IH. Clinical Relevance After endovascular intervention and open vascular surgery, vascular smooth muscle cells (VSMC) undergo a coordinated reprogramming of gene expression to facilitate arterial healing. Down regulation of VSMC-specific contractile biomarkers (eg, SM22 and MYH11) and induction of pathways that promote cell proliferation, migration, and matrix synthesis are hallmarks of this phenotypic switch. Dysregulated phenotypic switching leads to the development of neointimal hyperplasia and vascular restenosis. Identifying pathways that regulate or constrain VSMC phenotypic modulation, therefore, has the potential to decrease neointimal hyperplasia and improve outcomes after vascular intervention. In this study, we demonstrate that depletion of the non-voltage-gated cation channel TRPC6 promotes phenotypic switching and loss of contractile biomarkers in systemic arterial VSMC. TRPC6-/- mice developed significantly more pronounced luminal stenosis compared with wild-type mice after carotid wire injury. These results suggest that TRPC6 contributes to the restoration or maintenance of contractile phenotype in VSMC after injury. Understanding the role of TRPC6 in phenotypic switching may lead to mechanism-based therapies to mitigate restenosis.
publishDate 2020
dc.date.none.fl_str_mv 2020-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/141716
Smith, Andrew H.; Priya, Bhanu Priya; Driscoll, Erin C.; Chaudhuri, Pinaki; Birnbaumer, Lutz; et al.; Canonical transient receptor potential 6 channel deficiency promotes smooth muscle cells dedifferentiation and increased proliferation after arterial injury; Elsevier; Vascular Science; 1; 7-2020; 136-150
2666-3503
CONICET Digital
CONICET
url http://hdl.handle.net/11336/141716
identifier_str_mv Smith, Andrew H.; Priya, Bhanu Priya; Driscoll, Erin C.; Chaudhuri, Pinaki; Birnbaumer, Lutz; et al.; Canonical transient receptor potential 6 channel deficiency promotes smooth muscle cells dedifferentiation and increased proliferation after arterial injury; Elsevier; Vascular Science; 1; 7-2020; 136-150
2666-3503
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2666350320300134
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jvssci.2020.07.002
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269080305795072
score 13.13397