Neutrinos from collapsars

Autores
Romero, Gustavo Esteban; Peres, Orlando L. G.; Vieyro, Florencia Laura
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. Long gamma-ray bursts (GRBs) are associated with the gravitational collapse of very massive stars. The central engine of a GRB can collimate relativistic jets that propagate inside the stellar envelope. The shock waves produced when the jet disrupts the stellar surface are capable of accelerating particles up to very high energies. Aims. If the jet has hadronic content, neutrinos will be produced via charged pion decays. The main goal of this work is to estimate the neutrino emission produced in the region close to the surface of the star, taking pion and muon cooling into account, along with subtle effects arising from neutrino production in a highly magnetized medium. Methods. We estimate the maximum energies of the different kinds of particles and solve the coupled transport equations for each species. Once the particle distributions are known, we calculate the intensity of neutrinos. We study the different effects on the neutrinos that can change the relative weight of different flavors. In particular, we consider the effects of neutrino oscillations, and of neutrino spin precession caused by strong magnetic fields. Results. The expected neutrino signals from the shocks in the uncorking regions of Population III events is very weak, but the neutrino signal produced by Wolf-Rayet GRBs with z < 0.5 is not far from the level of the atmospheric background. Conclusions. The IceCube experiment does not have the sensitivity to detect neutrinos from the implosion of the earliest stars, but a number of high-energy neutrinos may be detected from nearby long GRBs. The cumulative signal should be detectable over several years (~10 yr) of integration with the full 86-string configuration.
Fil: Romero, Gustavo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Conicet - la Plata. Instituto Argentino de Radioastronomia (i); Argentina
Fil: Peres, Orlando L. G.. Universidade Estadual de Campinas; Brasil
Fil: Vieyro, Florencia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Conicet - la Plata. Instituto Argentino de Radioastronomia (i); Argentina
Materia
GAMMA-RAY BURST: GENERAL
NEUTRINOS
RADIATION MECHANISMS: NON-THERMAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/4131

id CONICETDig_9d864f6b8e6360666273928b0d33419c
oai_identifier_str oai:ri.conicet.gov.ar:11336/4131
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Neutrinos from collapsarsRomero, Gustavo EstebanPeres, Orlando L. G.Vieyro, Florencia LauraGAMMA-RAY BURST: GENERALNEUTRINOSRADIATION MECHANISMS: NON-THERMALhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. Long gamma-ray bursts (GRBs) are associated with the gravitational collapse of very massive stars. The central engine of a GRB can collimate relativistic jets that propagate inside the stellar envelope. The shock waves produced when the jet disrupts the stellar surface are capable of accelerating particles up to very high energies. Aims. If the jet has hadronic content, neutrinos will be produced via charged pion decays. The main goal of this work is to estimate the neutrino emission produced in the region close to the surface of the star, taking pion and muon cooling into account, along with subtle effects arising from neutrino production in a highly magnetized medium. Methods. We estimate the maximum energies of the different kinds of particles and solve the coupled transport equations for each species. Once the particle distributions are known, we calculate the intensity of neutrinos. We study the different effects on the neutrinos that can change the relative weight of different flavors. In particular, we consider the effects of neutrino oscillations, and of neutrino spin precession caused by strong magnetic fields. Results. The expected neutrino signals from the shocks in the uncorking regions of Population III events is very weak, but the neutrino signal produced by Wolf-Rayet GRBs with z < 0.5 is not far from the level of the atmospheric background. Conclusions. The IceCube experiment does not have the sensitivity to detect neutrinos from the implosion of the earliest stars, but a number of high-energy neutrinos may be detected from nearby long GRBs. The cumulative signal should be detectable over several years (~10 yr) of integration with the full 86-string configuration.Fil: Romero, Gustavo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Conicet - la Plata. Instituto Argentino de Radioastronomia (i); ArgentinaFil: Peres, Orlando L. G.. Universidade Estadual de Campinas; BrasilFil: Vieyro, Florencia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Conicet - la Plata. Instituto Argentino de Radioastronomia (i); ArgentinaEDP Sciences2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4131Romero, Gustavo Esteban; Peres, Orlando L. G.; Vieyro, Florencia Laura; Neutrinos from collapsars; EDP Sciences; Astronomy and Astrophysics; 558; 10-2013; 1-100004-6361enginfo:eu-repo/semantics/altIdentifier/arxiv/http://arxiv.org/abs/1309.6043info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201321701info:eu-repo/semantics/altIdentifier/url/http://www.aanda.org/articles/aa/abs/2013/10/aa21701-13/aa21701-13.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:43Zoai:ri.conicet.gov.ar:11336/4131instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:43.314CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Neutrinos from collapsars
title Neutrinos from collapsars
spellingShingle Neutrinos from collapsars
Romero, Gustavo Esteban
GAMMA-RAY BURST: GENERAL
NEUTRINOS
RADIATION MECHANISMS: NON-THERMAL
title_short Neutrinos from collapsars
title_full Neutrinos from collapsars
title_fullStr Neutrinos from collapsars
title_full_unstemmed Neutrinos from collapsars
title_sort Neutrinos from collapsars
dc.creator.none.fl_str_mv Romero, Gustavo Esteban
Peres, Orlando L. G.
Vieyro, Florencia Laura
author Romero, Gustavo Esteban
author_facet Romero, Gustavo Esteban
Peres, Orlando L. G.
Vieyro, Florencia Laura
author_role author
author2 Peres, Orlando L. G.
Vieyro, Florencia Laura
author2_role author
author
dc.subject.none.fl_str_mv GAMMA-RAY BURST: GENERAL
NEUTRINOS
RADIATION MECHANISMS: NON-THERMAL
topic GAMMA-RAY BURST: GENERAL
NEUTRINOS
RADIATION MECHANISMS: NON-THERMAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Context. Long gamma-ray bursts (GRBs) are associated with the gravitational collapse of very massive stars. The central engine of a GRB can collimate relativistic jets that propagate inside the stellar envelope. The shock waves produced when the jet disrupts the stellar surface are capable of accelerating particles up to very high energies. Aims. If the jet has hadronic content, neutrinos will be produced via charged pion decays. The main goal of this work is to estimate the neutrino emission produced in the region close to the surface of the star, taking pion and muon cooling into account, along with subtle effects arising from neutrino production in a highly magnetized medium. Methods. We estimate the maximum energies of the different kinds of particles and solve the coupled transport equations for each species. Once the particle distributions are known, we calculate the intensity of neutrinos. We study the different effects on the neutrinos that can change the relative weight of different flavors. In particular, we consider the effects of neutrino oscillations, and of neutrino spin precession caused by strong magnetic fields. Results. The expected neutrino signals from the shocks in the uncorking regions of Population III events is very weak, but the neutrino signal produced by Wolf-Rayet GRBs with z < 0.5 is not far from the level of the atmospheric background. Conclusions. The IceCube experiment does not have the sensitivity to detect neutrinos from the implosion of the earliest stars, but a number of high-energy neutrinos may be detected from nearby long GRBs. The cumulative signal should be detectable over several years (~10 yr) of integration with the full 86-string configuration.
Fil: Romero, Gustavo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Conicet - la Plata. Instituto Argentino de Radioastronomia (i); Argentina
Fil: Peres, Orlando L. G.. Universidade Estadual de Campinas; Brasil
Fil: Vieyro, Florencia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Conicet - la Plata. Instituto Argentino de Radioastronomia (i); Argentina
description Context. Long gamma-ray bursts (GRBs) are associated with the gravitational collapse of very massive stars. The central engine of a GRB can collimate relativistic jets that propagate inside the stellar envelope. The shock waves produced when the jet disrupts the stellar surface are capable of accelerating particles up to very high energies. Aims. If the jet has hadronic content, neutrinos will be produced via charged pion decays. The main goal of this work is to estimate the neutrino emission produced in the region close to the surface of the star, taking pion and muon cooling into account, along with subtle effects arising from neutrino production in a highly magnetized medium. Methods. We estimate the maximum energies of the different kinds of particles and solve the coupled transport equations for each species. Once the particle distributions are known, we calculate the intensity of neutrinos. We study the different effects on the neutrinos that can change the relative weight of different flavors. In particular, we consider the effects of neutrino oscillations, and of neutrino spin precession caused by strong magnetic fields. Results. The expected neutrino signals from the shocks in the uncorking regions of Population III events is very weak, but the neutrino signal produced by Wolf-Rayet GRBs with z < 0.5 is not far from the level of the atmospheric background. Conclusions. The IceCube experiment does not have the sensitivity to detect neutrinos from the implosion of the earliest stars, but a number of high-energy neutrinos may be detected from nearby long GRBs. The cumulative signal should be detectable over several years (~10 yr) of integration with the full 86-string configuration.
publishDate 2013
dc.date.none.fl_str_mv 2013-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/4131
Romero, Gustavo Esteban; Peres, Orlando L. G.; Vieyro, Florencia Laura; Neutrinos from collapsars; EDP Sciences; Astronomy and Astrophysics; 558; 10-2013; 1-10
0004-6361
url http://hdl.handle.net/11336/4131
identifier_str_mv Romero, Gustavo Esteban; Peres, Orlando L. G.; Vieyro, Florencia Laura; Neutrinos from collapsars; EDP Sciences; Astronomy and Astrophysics; 558; 10-2013; 1-10
0004-6361
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/arxiv/http://arxiv.org/abs/1309.6043
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201321701
info:eu-repo/semantics/altIdentifier/url/http://www.aanda.org/articles/aa/abs/2013/10/aa21701-13/aa21701-13.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268811658526720
score 13.13397