Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome

Autores
Quinet, Annabel; Vessoni, Alexandre T; Rocha, Clarissa R; Gottifredi, Vanesa; Biard, Denis; Sarasin, Alain; Menck, Carlos F; Stary, Anne
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Ultraviolet (UV)-induced DNA damage are removed by nucleotide excision repair (NER) or can be tolerated by specialized translesion synthesis (TLS) polymerases, such as Polη. TLS may act at stalled replication forks or through an S-phase independent gap-filling mechanism. After UVC irradiation, Polη-deficient (XP-V) human cells were arrested in early S-phase and exhibited both single-strand DNA (ssDNA) and prolonged replication fork stalling, as detected by DNA fiber assay. In contrast, NER deficiency in XP-C cells caused no apparent defect in S-phase progression despite the accumulation of ssDNA and a G2-phase arrest. These data indicate that while Polη is essential for DNA synthesis at ongoing damaged replication forks, NER deficiency might unmask the involvement of tolerance pathway through a gap-filling mechanism. ATR knock down by siRNA or caffeine addition provoked increased cell death in both XP-V and XP-C cells exposed to low-dose of UVC, underscoring the involvement of ATR/Chk1 pathway in both DNA damage tolerance mechanisms. We generated a unique human cell line deficient in XPC and Polη proteins, which exhibited both S- and G2-phase arrest after UVC irradiation, consistent with both single deficiencies. In these XP-C/Polη(KD) cells, UVC-induced replicative intermediates may collapse into double-strand breaks, leading to cell death. In conclusion, both TLS at stalled replication forks and gap-filling are active mechanisms for the tolerance of UVC-induced DNA damage in human cells and the preference for one or another pathway depends on the cellular genotype.
Fil: Quinet, Annabel. Universidade de Sao Paulo; Brasil. Universite Paris Sud; Francia
Fil: Vessoni, Alexandre T. Universidade de Sao Paulo; Brasil
Fil: Rocha, Clarissa R. Universidade de Sao Paulo; Brasil
Fil: Gottifredi, Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina
Fil: Biard, Denis. Commissariat à l’énergie atomique et aux énergies alternatives - CEA ; Francia
Fil: Sarasin, Alain. Universite de Paris; Francia
Fil: Menck, Carlos F. Universidade de Sao Paulo; Brasil
Fil: Stary, Anne. Universite de Paris; Francia
Materia
Pol Eta
Translesion Dna Synthesis
Nucleotide Excision Repair
Xeroderma Pigmentosum
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/8405

id CONICETDig_9d841d76df18ab3d76f81363c8ff30d1
oai_identifier_str oai:ri.conicet.gov.ar:11336/8405
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genomeQuinet, AnnabelVessoni, Alexandre TRocha, Clarissa RGottifredi, VanesaBiard, DenisSarasin, AlainMenck, Carlos FStary, AnnePol EtaTranslesion Dna SynthesisNucleotide Excision RepairXeroderma Pigmentosumhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Ultraviolet (UV)-induced DNA damage are removed by nucleotide excision repair (NER) or can be tolerated by specialized translesion synthesis (TLS) polymerases, such as Polη. TLS may act at stalled replication forks or through an S-phase independent gap-filling mechanism. After UVC irradiation, Polη-deficient (XP-V) human cells were arrested in early S-phase and exhibited both single-strand DNA (ssDNA) and prolonged replication fork stalling, as detected by DNA fiber assay. In contrast, NER deficiency in XP-C cells caused no apparent defect in S-phase progression despite the accumulation of ssDNA and a G2-phase arrest. These data indicate that while Polη is essential for DNA synthesis at ongoing damaged replication forks, NER deficiency might unmask the involvement of tolerance pathway through a gap-filling mechanism. ATR knock down by siRNA or caffeine addition provoked increased cell death in both XP-V and XP-C cells exposed to low-dose of UVC, underscoring the involvement of ATR/Chk1 pathway in both DNA damage tolerance mechanisms. We generated a unique human cell line deficient in XPC and Polη proteins, which exhibited both S- and G2-phase arrest after UVC irradiation, consistent with both single deficiencies. In these XP-C/Polη(KD) cells, UVC-induced replicative intermediates may collapse into double-strand breaks, leading to cell death. In conclusion, both TLS at stalled replication forks and gap-filling are active mechanisms for the tolerance of UVC-induced DNA damage in human cells and the preference for one or another pathway depends on the cellular genotype.Fil: Quinet, Annabel. Universidade de Sao Paulo; Brasil. Universite Paris Sud; FranciaFil: Vessoni, Alexandre T. Universidade de Sao Paulo; BrasilFil: Rocha, Clarissa R. Universidade de Sao Paulo; BrasilFil: Gottifredi, Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Biard, Denis. Commissariat à l’énergie atomique et aux énergies alternatives - CEA ; FranciaFil: Sarasin, Alain. Universite de Paris; FranciaFil: Menck, Carlos F. Universidade de Sao Paulo; BrasilFil: Stary, Anne. Universite de Paris; FranciaElsevier2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8405Quinet, Annabel; Vessoni, Alexandre T; Rocha, Clarissa R; Gottifredi, Vanesa; Biard, Denis; et al.; Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome; Elsevier; Dna Repair; 14; 2-2014; 27-381568-7864enginfo:eu-repo/semantics/altIdentifier/url/www.sciencedirect.com/science/article/pii/S1568786413002929info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dnarep.2013.12.005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:14:14Zoai:ri.conicet.gov.ar:11336/8405instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:14:14.828CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome
title Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome
spellingShingle Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome
Quinet, Annabel
Pol Eta
Translesion Dna Synthesis
Nucleotide Excision Repair
Xeroderma Pigmentosum
title_short Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome
title_full Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome
title_fullStr Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome
title_full_unstemmed Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome
title_sort Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome
dc.creator.none.fl_str_mv Quinet, Annabel
Vessoni, Alexandre T
Rocha, Clarissa R
Gottifredi, Vanesa
Biard, Denis
Sarasin, Alain
Menck, Carlos F
Stary, Anne
author Quinet, Annabel
author_facet Quinet, Annabel
Vessoni, Alexandre T
Rocha, Clarissa R
Gottifredi, Vanesa
Biard, Denis
Sarasin, Alain
Menck, Carlos F
Stary, Anne
author_role author
author2 Vessoni, Alexandre T
Rocha, Clarissa R
Gottifredi, Vanesa
Biard, Denis
Sarasin, Alain
Menck, Carlos F
Stary, Anne
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Pol Eta
Translesion Dna Synthesis
Nucleotide Excision Repair
Xeroderma Pigmentosum
topic Pol Eta
Translesion Dna Synthesis
Nucleotide Excision Repair
Xeroderma Pigmentosum
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Ultraviolet (UV)-induced DNA damage are removed by nucleotide excision repair (NER) or can be tolerated by specialized translesion synthesis (TLS) polymerases, such as Polη. TLS may act at stalled replication forks or through an S-phase independent gap-filling mechanism. After UVC irradiation, Polη-deficient (XP-V) human cells were arrested in early S-phase and exhibited both single-strand DNA (ssDNA) and prolonged replication fork stalling, as detected by DNA fiber assay. In contrast, NER deficiency in XP-C cells caused no apparent defect in S-phase progression despite the accumulation of ssDNA and a G2-phase arrest. These data indicate that while Polη is essential for DNA synthesis at ongoing damaged replication forks, NER deficiency might unmask the involvement of tolerance pathway through a gap-filling mechanism. ATR knock down by siRNA or caffeine addition provoked increased cell death in both XP-V and XP-C cells exposed to low-dose of UVC, underscoring the involvement of ATR/Chk1 pathway in both DNA damage tolerance mechanisms. We generated a unique human cell line deficient in XPC and Polη proteins, which exhibited both S- and G2-phase arrest after UVC irradiation, consistent with both single deficiencies. In these XP-C/Polη(KD) cells, UVC-induced replicative intermediates may collapse into double-strand breaks, leading to cell death. In conclusion, both TLS at stalled replication forks and gap-filling are active mechanisms for the tolerance of UVC-induced DNA damage in human cells and the preference for one or another pathway depends on the cellular genotype.
Fil: Quinet, Annabel. Universidade de Sao Paulo; Brasil. Universite Paris Sud; Francia
Fil: Vessoni, Alexandre T. Universidade de Sao Paulo; Brasil
Fil: Rocha, Clarissa R. Universidade de Sao Paulo; Brasil
Fil: Gottifredi, Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina
Fil: Biard, Denis. Commissariat à l’énergie atomique et aux énergies alternatives - CEA ; Francia
Fil: Sarasin, Alain. Universite de Paris; Francia
Fil: Menck, Carlos F. Universidade de Sao Paulo; Brasil
Fil: Stary, Anne. Universite de Paris; Francia
description Ultraviolet (UV)-induced DNA damage are removed by nucleotide excision repair (NER) or can be tolerated by specialized translesion synthesis (TLS) polymerases, such as Polη. TLS may act at stalled replication forks or through an S-phase independent gap-filling mechanism. After UVC irradiation, Polη-deficient (XP-V) human cells were arrested in early S-phase and exhibited both single-strand DNA (ssDNA) and prolonged replication fork stalling, as detected by DNA fiber assay. In contrast, NER deficiency in XP-C cells caused no apparent defect in S-phase progression despite the accumulation of ssDNA and a G2-phase arrest. These data indicate that while Polη is essential for DNA synthesis at ongoing damaged replication forks, NER deficiency might unmask the involvement of tolerance pathway through a gap-filling mechanism. ATR knock down by siRNA or caffeine addition provoked increased cell death in both XP-V and XP-C cells exposed to low-dose of UVC, underscoring the involvement of ATR/Chk1 pathway in both DNA damage tolerance mechanisms. We generated a unique human cell line deficient in XPC and Polη proteins, which exhibited both S- and G2-phase arrest after UVC irradiation, consistent with both single deficiencies. In these XP-C/Polη(KD) cells, UVC-induced replicative intermediates may collapse into double-strand breaks, leading to cell death. In conclusion, both TLS at stalled replication forks and gap-filling are active mechanisms for the tolerance of UVC-induced DNA damage in human cells and the preference for one or another pathway depends on the cellular genotype.
publishDate 2014
dc.date.none.fl_str_mv 2014-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/8405
Quinet, Annabel; Vessoni, Alexandre T; Rocha, Clarissa R; Gottifredi, Vanesa; Biard, Denis; et al.; Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome; Elsevier; Dna Repair; 14; 2-2014; 27-38
1568-7864
url http://hdl.handle.net/11336/8405
identifier_str_mv Quinet, Annabel; Vessoni, Alexandre T; Rocha, Clarissa R; Gottifredi, Vanesa; Biard, Denis; et al.; Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome; Elsevier; Dna Repair; 14; 2-2014; 27-38
1568-7864
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/www.sciencedirect.com/science/article/pii/S1568786413002929
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dnarep.2013.12.005
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781560682971136
score 12.982451