Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface

Autores
Leng, Kai; Wang, Lin; Shao, Yan; Abdelwahab, Ibrahim; Grinblat, Gustavo Sergio; Verzhbitskiy, Ivan; Li, Runlai; Cai, Yongqing; Chi, Xiao; Fu, Wei; Song, Peng; Rusydi, Andrivo; Eda, Goki; Maier, Stefan A.; Loh, Kian Ping
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Quasi-two-dimensional perovskites have emerged as a new material platform for optoelectronics on account of its intrinsic stability. A major bottleneck to device performance is the high charge injection barrier caused by organic molecular layers on its basal plane, thus the best performing device currently relies on edge contact. Herein, by leveraging on van der Waals coupling and energy level matching between two-dimensional Ruddlesden-Popper perovskite and graphene, we show that the plane-contacted perovskite and graphene interface presents a lower barrier than gold for charge injection. Electron tunneling across the interface occurs via a gate-tunable, direct tunneling-to-field emission mechanism with increasing bias, and photoinduced charge transfer occurs at femtosecond timescale (~50 fs). Field effect transistors fabricated on molecularly thin Ruddlesden-Popper perovskite using graphene contact exhibit electron mobilities ranging from 0.1 to 0.018 cm2V−1s−1 between 1.7 to 200 K. Scanning tunneling spectroscopy studies reveal layer-dependent tunneling barrier and domain size on few-layered Ruddlesden-Popper perovskite.
Fil: Leng, Kai. National University Of Singapore; Singapur
Fil: Wang, Lin. National University Of Singapore; Singapur
Fil: Shao, Yan. National University Of Singapore; Singapur
Fil: Abdelwahab, Ibrahim. National University Of Singapore; Singapur
Fil: Grinblat, Gustavo Sergio. Imperial College London; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Verzhbitskiy, Ivan. National University Of Singapore; Singapur
Fil: Li, Runlai. National University Of Singapore; Singapur
Fil: Cai, Yongqing. University Of Macau; China
Fil: Chi, Xiao. National University Of Singapore; Singapur
Fil: Fu, Wei. National University Of Singapore; Singapur
Fil: Song, Peng. National University Of Singapore; Singapur
Fil: Rusydi, Andrivo. National University Of Singapore; Singapur
Fil: Eda, Goki. National University Of Singapore; Singapur
Fil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania
Fil: Loh, Kian Ping. National University Of Singapore; Singapur
Materia
Graphene
2D Hybrid perovskites
Tunneling
Pump/probe spectroscopy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/145819

id CONICETDig_9d475ecaf55d7193d47acafd3b338952
oai_identifier_str oai:ri.conicet.gov.ar:11336/145819
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interfaceLeng, KaiWang, LinShao, YanAbdelwahab, IbrahimGrinblat, Gustavo SergioVerzhbitskiy, IvanLi, RunlaiCai, YongqingChi, XiaoFu, WeiSong, PengRusydi, AndrivoEda, GokiMaier, Stefan A.Loh, Kian PingGraphene2D Hybrid perovskitesTunnelingPump/probe spectroscopyhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Quasi-two-dimensional perovskites have emerged as a new material platform for optoelectronics on account of its intrinsic stability. A major bottleneck to device performance is the high charge injection barrier caused by organic molecular layers on its basal plane, thus the best performing device currently relies on edge contact. Herein, by leveraging on van der Waals coupling and energy level matching between two-dimensional Ruddlesden-Popper perovskite and graphene, we show that the plane-contacted perovskite and graphene interface presents a lower barrier than gold for charge injection. Electron tunneling across the interface occurs via a gate-tunable, direct tunneling-to-field emission mechanism with increasing bias, and photoinduced charge transfer occurs at femtosecond timescale (~50 fs). Field effect transistors fabricated on molecularly thin Ruddlesden-Popper perovskite using graphene contact exhibit electron mobilities ranging from 0.1 to 0.018 cm2V−1s−1 between 1.7 to 200 K. Scanning tunneling spectroscopy studies reveal layer-dependent tunneling barrier and domain size on few-layered Ruddlesden-Popper perovskite.Fil: Leng, Kai. National University Of Singapore; SingapurFil: Wang, Lin. National University Of Singapore; SingapurFil: Shao, Yan. National University Of Singapore; SingapurFil: Abdelwahab, Ibrahim. National University Of Singapore; SingapurFil: Grinblat, Gustavo Sergio. Imperial College London; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Verzhbitskiy, Ivan. National University Of Singapore; SingapurFil: Li, Runlai. National University Of Singapore; SingapurFil: Cai, Yongqing. University Of Macau; ChinaFil: Chi, Xiao. National University Of Singapore; SingapurFil: Fu, Wei. National University Of Singapore; SingapurFil: Song, Peng. National University Of Singapore; SingapurFil: Rusydi, Andrivo. National University Of Singapore; SingapurFil: Eda, Goki. National University Of Singapore; SingapurFil: Maier, Stefan A.. Ludwig Maximilians Universitat; AlemaniaFil: Loh, Kian Ping. National University Of Singapore; SingapurNature Publishing Group2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/145819Leng, Kai; Wang, Lin; Shao, Yan; Abdelwahab, Ibrahim; Grinblat, Gustavo Sergio; et al.; Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface; Nature Publishing Group; Nature Communications; 11; 1; 10-2020; 1-82041-1723CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41467-020-19331-6info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-020-19331-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:44Zoai:ri.conicet.gov.ar:11336/145819instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:44.309CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface
title Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface
spellingShingle Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface
Leng, Kai
Graphene
2D Hybrid perovskites
Tunneling
Pump/probe spectroscopy
title_short Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface
title_full Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface
title_fullStr Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface
title_full_unstemmed Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface
title_sort Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface
dc.creator.none.fl_str_mv Leng, Kai
Wang, Lin
Shao, Yan
Abdelwahab, Ibrahim
Grinblat, Gustavo Sergio
Verzhbitskiy, Ivan
Li, Runlai
Cai, Yongqing
Chi, Xiao
Fu, Wei
Song, Peng
Rusydi, Andrivo
Eda, Goki
Maier, Stefan A.
Loh, Kian Ping
author Leng, Kai
author_facet Leng, Kai
Wang, Lin
Shao, Yan
Abdelwahab, Ibrahim
Grinblat, Gustavo Sergio
Verzhbitskiy, Ivan
Li, Runlai
Cai, Yongqing
Chi, Xiao
Fu, Wei
Song, Peng
Rusydi, Andrivo
Eda, Goki
Maier, Stefan A.
Loh, Kian Ping
author_role author
author2 Wang, Lin
Shao, Yan
Abdelwahab, Ibrahim
Grinblat, Gustavo Sergio
Verzhbitskiy, Ivan
Li, Runlai
Cai, Yongqing
Chi, Xiao
Fu, Wei
Song, Peng
Rusydi, Andrivo
Eda, Goki
Maier, Stefan A.
Loh, Kian Ping
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Graphene
2D Hybrid perovskites
Tunneling
Pump/probe spectroscopy
topic Graphene
2D Hybrid perovskites
Tunneling
Pump/probe spectroscopy
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Quasi-two-dimensional perovskites have emerged as a new material platform for optoelectronics on account of its intrinsic stability. A major bottleneck to device performance is the high charge injection barrier caused by organic molecular layers on its basal plane, thus the best performing device currently relies on edge contact. Herein, by leveraging on van der Waals coupling and energy level matching between two-dimensional Ruddlesden-Popper perovskite and graphene, we show that the plane-contacted perovskite and graphene interface presents a lower barrier than gold for charge injection. Electron tunneling across the interface occurs via a gate-tunable, direct tunneling-to-field emission mechanism with increasing bias, and photoinduced charge transfer occurs at femtosecond timescale (~50 fs). Field effect transistors fabricated on molecularly thin Ruddlesden-Popper perovskite using graphene contact exhibit electron mobilities ranging from 0.1 to 0.018 cm2V−1s−1 between 1.7 to 200 K. Scanning tunneling spectroscopy studies reveal layer-dependent tunneling barrier and domain size on few-layered Ruddlesden-Popper perovskite.
Fil: Leng, Kai. National University Of Singapore; Singapur
Fil: Wang, Lin. National University Of Singapore; Singapur
Fil: Shao, Yan. National University Of Singapore; Singapur
Fil: Abdelwahab, Ibrahim. National University Of Singapore; Singapur
Fil: Grinblat, Gustavo Sergio. Imperial College London; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Verzhbitskiy, Ivan. National University Of Singapore; Singapur
Fil: Li, Runlai. National University Of Singapore; Singapur
Fil: Cai, Yongqing. University Of Macau; China
Fil: Chi, Xiao. National University Of Singapore; Singapur
Fil: Fu, Wei. National University Of Singapore; Singapur
Fil: Song, Peng. National University Of Singapore; Singapur
Fil: Rusydi, Andrivo. National University Of Singapore; Singapur
Fil: Eda, Goki. National University Of Singapore; Singapur
Fil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania
Fil: Loh, Kian Ping. National University Of Singapore; Singapur
description Quasi-two-dimensional perovskites have emerged as a new material platform for optoelectronics on account of its intrinsic stability. A major bottleneck to device performance is the high charge injection barrier caused by organic molecular layers on its basal plane, thus the best performing device currently relies on edge contact. Herein, by leveraging on van der Waals coupling and energy level matching between two-dimensional Ruddlesden-Popper perovskite and graphene, we show that the plane-contacted perovskite and graphene interface presents a lower barrier than gold for charge injection. Electron tunneling across the interface occurs via a gate-tunable, direct tunneling-to-field emission mechanism with increasing bias, and photoinduced charge transfer occurs at femtosecond timescale (~50 fs). Field effect transistors fabricated on molecularly thin Ruddlesden-Popper perovskite using graphene contact exhibit electron mobilities ranging from 0.1 to 0.018 cm2V−1s−1 between 1.7 to 200 K. Scanning tunneling spectroscopy studies reveal layer-dependent tunneling barrier and domain size on few-layered Ruddlesden-Popper perovskite.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/145819
Leng, Kai; Wang, Lin; Shao, Yan; Abdelwahab, Ibrahim; Grinblat, Gustavo Sergio; et al.; Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface; Nature Publishing Group; Nature Communications; 11; 1; 10-2020; 1-8
2041-1723
CONICET Digital
CONICET
url http://hdl.handle.net/11336/145819
identifier_str_mv Leng, Kai; Wang, Lin; Shao, Yan; Abdelwahab, Ibrahim; Grinblat, Gustavo Sergio; et al.; Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface; Nature Publishing Group; Nature Communications; 11; 1; 10-2020; 1-8
2041-1723
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41467-020-19331-6
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-020-19331-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614057380806656
score 13.070432