Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors

Autores
Karaman, Ceren; Bengoa, Leandro Nicolás; Gonzalez Gil, Rosa M.; Gómez-romero, Pedro
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the pursuit of advancing energy storage technologies, the exploration of novel electrode materials for supercapacitors, specifically organic materials, has garnered significant attention. This work delves into the electrochemical performance of quinone-anchored three-dimensional (3D) graphene (3DG) architectures as potential electrode materials for high-energy supercapacitors, focusing on elucidating the influence of different quinone types including 1,4-naphthoquinone (NQ), anthraquinone (AQ), duraquinone (DQ), p-benzoquinone (BQ), 2,5-dimethyl-1,4-benzoquinone (DMBQ), and sodium anthraquinone-2-sulfonate (SAQS). To that end, various quinone-anchored three-dimensional graphene (Q_3DG) architectures were synthesized via a chemical reduction-induced self-assembly technique in the presence of l-ascorbic acid, a green reducing agent. The physicochemical characterizations confirmed the successful incorporation of quinones to the carbon structure, without the presence of any impurities. Different interaction mechanisms between graphene oxide (GO) and quinone molecules during the synthesis led to different surface morphologies, which affected their electrochemical behavior. The 3-electrode electrochemical characterizations in 1.0 M Na2SO4 electrolyte revealed that all Q_3DG structures exhibited superior electrochemical performance compared to GO, as well as to a Bare_3DG sample synthesized without quinone molecules. NQ anchored 3DG (NQ_3DG) network yielded the highest specific capacitance value of 386.3 F.g−1 at 10 mV.s−1, which was almost 50 times larger than that of Bare_3DG. The findings not only shed light on the fundamental mechanisms governing charge storage and transfer within these unique architectures but also provide valuable insights for the rational and green design of next-generation organic electrode-based supercapacitors with enhanced energy storage capabilities.
Fil: Karaman, Ceren. Institut Catalá de Nanociencia I Nanotecnología; España. Akdeniz University; Turquía
Fil: Bengoa, Leandro Nicolás. Institut Catalá de Nanociencia I Nanotecnología; España. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; Argentina
Fil: Gonzalez Gil, Rosa M.. Institut Catalá de Nanociencia I Nanotecnología; España
Fil: Gómez-romero, Pedro. Institut Catalá de Nanociencia I Nanotecnología; España
Materia
QUINONE
SUPERCAPACITORS
HYBRID
GRAPHENE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/263295

id CONICETDig_7b2badb89946e2b1432aebe992216e84
oai_identifier_str oai:ri.conicet.gov.ar:11336/263295
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitorsKaraman, CerenBengoa, Leandro NicolásGonzalez Gil, Rosa M.Gómez-romero, PedroQUINONESUPERCAPACITORSHYBRIDGRAPHENEhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In the pursuit of advancing energy storage technologies, the exploration of novel electrode materials for supercapacitors, specifically organic materials, has garnered significant attention. This work delves into the electrochemical performance of quinone-anchored three-dimensional (3D) graphene (3DG) architectures as potential electrode materials for high-energy supercapacitors, focusing on elucidating the influence of different quinone types including 1,4-naphthoquinone (NQ), anthraquinone (AQ), duraquinone (DQ), p-benzoquinone (BQ), 2,5-dimethyl-1,4-benzoquinone (DMBQ), and sodium anthraquinone-2-sulfonate (SAQS). To that end, various quinone-anchored three-dimensional graphene (Q_3DG) architectures were synthesized via a chemical reduction-induced self-assembly technique in the presence of l-ascorbic acid, a green reducing agent. The physicochemical characterizations confirmed the successful incorporation of quinones to the carbon structure, without the presence of any impurities. Different interaction mechanisms between graphene oxide (GO) and quinone molecules during the synthesis led to different surface morphologies, which affected their electrochemical behavior. The 3-electrode electrochemical characterizations in 1.0 M Na2SO4 electrolyte revealed that all Q_3DG structures exhibited superior electrochemical performance compared to GO, as well as to a Bare_3DG sample synthesized without quinone molecules. NQ anchored 3DG (NQ_3DG) network yielded the highest specific capacitance value of 386.3 F.g−1 at 10 mV.s−1, which was almost 50 times larger than that of Bare_3DG. The findings not only shed light on the fundamental mechanisms governing charge storage and transfer within these unique architectures but also provide valuable insights for the rational and green design of next-generation organic electrode-based supercapacitors with enhanced energy storage capabilities.Fil: Karaman, Ceren. Institut Catalá de Nanociencia I Nanotecnología; España. Akdeniz University; TurquíaFil: Bengoa, Leandro Nicolás. Institut Catalá de Nanociencia I Nanotecnología; España. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; ArgentinaFil: Gonzalez Gil, Rosa M.. Institut Catalá de Nanociencia I Nanotecnología; EspañaFil: Gómez-romero, Pedro. Institut Catalá de Nanociencia I Nanotecnología; EspañaPergamon-Elsevier Science Ltd2025-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263295Karaman, Ceren; Bengoa, Leandro Nicolás; Gonzalez Gil, Rosa M. ; Gómez-romero, Pedro; Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 512; 145414; 2-2025; 1-120013-4686CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0013468624016505info:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2024.145414info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:44Zoai:ri.conicet.gov.ar:11336/263295instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:45.291CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors
title Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors
spellingShingle Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors
Karaman, Ceren
QUINONE
SUPERCAPACITORS
HYBRID
GRAPHENE
title_short Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors
title_full Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors
title_fullStr Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors
title_full_unstemmed Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors
title_sort Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors
dc.creator.none.fl_str_mv Karaman, Ceren
Bengoa, Leandro Nicolás
Gonzalez Gil, Rosa M.
Gómez-romero, Pedro
author Karaman, Ceren
author_facet Karaman, Ceren
Bengoa, Leandro Nicolás
Gonzalez Gil, Rosa M.
Gómez-romero, Pedro
author_role author
author2 Bengoa, Leandro Nicolás
Gonzalez Gil, Rosa M.
Gómez-romero, Pedro
author2_role author
author
author
dc.subject.none.fl_str_mv QUINONE
SUPERCAPACITORS
HYBRID
GRAPHENE
topic QUINONE
SUPERCAPACITORS
HYBRID
GRAPHENE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the pursuit of advancing energy storage technologies, the exploration of novel electrode materials for supercapacitors, specifically organic materials, has garnered significant attention. This work delves into the electrochemical performance of quinone-anchored three-dimensional (3D) graphene (3DG) architectures as potential electrode materials for high-energy supercapacitors, focusing on elucidating the influence of different quinone types including 1,4-naphthoquinone (NQ), anthraquinone (AQ), duraquinone (DQ), p-benzoquinone (BQ), 2,5-dimethyl-1,4-benzoquinone (DMBQ), and sodium anthraquinone-2-sulfonate (SAQS). To that end, various quinone-anchored three-dimensional graphene (Q_3DG) architectures were synthesized via a chemical reduction-induced self-assembly technique in the presence of l-ascorbic acid, a green reducing agent. The physicochemical characterizations confirmed the successful incorporation of quinones to the carbon structure, without the presence of any impurities. Different interaction mechanisms between graphene oxide (GO) and quinone molecules during the synthesis led to different surface morphologies, which affected their electrochemical behavior. The 3-electrode electrochemical characterizations in 1.0 M Na2SO4 electrolyte revealed that all Q_3DG structures exhibited superior electrochemical performance compared to GO, as well as to a Bare_3DG sample synthesized without quinone molecules. NQ anchored 3DG (NQ_3DG) network yielded the highest specific capacitance value of 386.3 F.g−1 at 10 mV.s−1, which was almost 50 times larger than that of Bare_3DG. The findings not only shed light on the fundamental mechanisms governing charge storage and transfer within these unique architectures but also provide valuable insights for the rational and green design of next-generation organic electrode-based supercapacitors with enhanced energy storage capabilities.
Fil: Karaman, Ceren. Institut Catalá de Nanociencia I Nanotecnología; España. Akdeniz University; Turquía
Fil: Bengoa, Leandro Nicolás. Institut Catalá de Nanociencia I Nanotecnología; España. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; Argentina
Fil: Gonzalez Gil, Rosa M.. Institut Catalá de Nanociencia I Nanotecnología; España
Fil: Gómez-romero, Pedro. Institut Catalá de Nanociencia I Nanotecnología; España
description In the pursuit of advancing energy storage technologies, the exploration of novel electrode materials for supercapacitors, specifically organic materials, has garnered significant attention. This work delves into the electrochemical performance of quinone-anchored three-dimensional (3D) graphene (3DG) architectures as potential electrode materials for high-energy supercapacitors, focusing on elucidating the influence of different quinone types including 1,4-naphthoquinone (NQ), anthraquinone (AQ), duraquinone (DQ), p-benzoquinone (BQ), 2,5-dimethyl-1,4-benzoquinone (DMBQ), and sodium anthraquinone-2-sulfonate (SAQS). To that end, various quinone-anchored three-dimensional graphene (Q_3DG) architectures were synthesized via a chemical reduction-induced self-assembly technique in the presence of l-ascorbic acid, a green reducing agent. The physicochemical characterizations confirmed the successful incorporation of quinones to the carbon structure, without the presence of any impurities. Different interaction mechanisms between graphene oxide (GO) and quinone molecules during the synthesis led to different surface morphologies, which affected their electrochemical behavior. The 3-electrode electrochemical characterizations in 1.0 M Na2SO4 electrolyte revealed that all Q_3DG structures exhibited superior electrochemical performance compared to GO, as well as to a Bare_3DG sample synthesized without quinone molecules. NQ anchored 3DG (NQ_3DG) network yielded the highest specific capacitance value of 386.3 F.g−1 at 10 mV.s−1, which was almost 50 times larger than that of Bare_3DG. The findings not only shed light on the fundamental mechanisms governing charge storage and transfer within these unique architectures but also provide valuable insights for the rational and green design of next-generation organic electrode-based supercapacitors with enhanced energy storage capabilities.
publishDate 2025
dc.date.none.fl_str_mv 2025-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/263295
Karaman, Ceren; Bengoa, Leandro Nicolás; Gonzalez Gil, Rosa M. ; Gómez-romero, Pedro; Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 512; 145414; 2-2025; 1-12
0013-4686
CONICET Digital
CONICET
url http://hdl.handle.net/11336/263295
identifier_str_mv Karaman, Ceren; Bengoa, Leandro Nicolás; Gonzalez Gil, Rosa M. ; Gómez-romero, Pedro; Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 512; 145414; 2-2025; 1-12
0013-4686
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0013468624016505
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2024.145414
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270056306704384
score 13.13397