Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors
- Autores
- Karaman, Ceren; Bengoa, Leandro Nicolás; Gonzalez Gil, Rosa M.; Gómez-romero, Pedro
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the pursuit of advancing energy storage technologies, the exploration of novel electrode materials for supercapacitors, specifically organic materials, has garnered significant attention. This work delves into the electrochemical performance of quinone-anchored three-dimensional (3D) graphene (3DG) architectures as potential electrode materials for high-energy supercapacitors, focusing on elucidating the influence of different quinone types including 1,4-naphthoquinone (NQ), anthraquinone (AQ), duraquinone (DQ), p-benzoquinone (BQ), 2,5-dimethyl-1,4-benzoquinone (DMBQ), and sodium anthraquinone-2-sulfonate (SAQS). To that end, various quinone-anchored three-dimensional graphene (Q_3DG) architectures were synthesized via a chemical reduction-induced self-assembly technique in the presence of l-ascorbic acid, a green reducing agent. The physicochemical characterizations confirmed the successful incorporation of quinones to the carbon structure, without the presence of any impurities. Different interaction mechanisms between graphene oxide (GO) and quinone molecules during the synthesis led to different surface morphologies, which affected their electrochemical behavior. The 3-electrode electrochemical characterizations in 1.0 M Na2SO4 electrolyte revealed that all Q_3DG structures exhibited superior electrochemical performance compared to GO, as well as to a Bare_3DG sample synthesized without quinone molecules. NQ anchored 3DG (NQ_3DG) network yielded the highest specific capacitance value of 386.3 F.g−1 at 10 mV.s−1, which was almost 50 times larger than that of Bare_3DG. The findings not only shed light on the fundamental mechanisms governing charge storage and transfer within these unique architectures but also provide valuable insights for the rational and green design of next-generation organic electrode-based supercapacitors with enhanced energy storage capabilities.
Fil: Karaman, Ceren. Institut Catalá de Nanociencia I Nanotecnología; España. Akdeniz University; Turquía
Fil: Bengoa, Leandro Nicolás. Institut Catalá de Nanociencia I Nanotecnología; España. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; Argentina
Fil: Gonzalez Gil, Rosa M.. Institut Catalá de Nanociencia I Nanotecnología; España
Fil: Gómez-romero, Pedro. Institut Catalá de Nanociencia I Nanotecnología; España - Materia
-
QUINONE
SUPERCAPACITORS
HYBRID
GRAPHENE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/263295
Ver los metadatos del registro completo
id |
CONICETDig_7b2badb89946e2b1432aebe992216e84 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/263295 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitorsKaraman, CerenBengoa, Leandro NicolásGonzalez Gil, Rosa M.Gómez-romero, PedroQUINONESUPERCAPACITORSHYBRIDGRAPHENEhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In the pursuit of advancing energy storage technologies, the exploration of novel electrode materials for supercapacitors, specifically organic materials, has garnered significant attention. This work delves into the electrochemical performance of quinone-anchored three-dimensional (3D) graphene (3DG) architectures as potential electrode materials for high-energy supercapacitors, focusing on elucidating the influence of different quinone types including 1,4-naphthoquinone (NQ), anthraquinone (AQ), duraquinone (DQ), p-benzoquinone (BQ), 2,5-dimethyl-1,4-benzoquinone (DMBQ), and sodium anthraquinone-2-sulfonate (SAQS). To that end, various quinone-anchored three-dimensional graphene (Q_3DG) architectures were synthesized via a chemical reduction-induced self-assembly technique in the presence of l-ascorbic acid, a green reducing agent. The physicochemical characterizations confirmed the successful incorporation of quinones to the carbon structure, without the presence of any impurities. Different interaction mechanisms between graphene oxide (GO) and quinone molecules during the synthesis led to different surface morphologies, which affected their electrochemical behavior. The 3-electrode electrochemical characterizations in 1.0 M Na2SO4 electrolyte revealed that all Q_3DG structures exhibited superior electrochemical performance compared to GO, as well as to a Bare_3DG sample synthesized without quinone molecules. NQ anchored 3DG (NQ_3DG) network yielded the highest specific capacitance value of 386.3 F.g−1 at 10 mV.s−1, which was almost 50 times larger than that of Bare_3DG. The findings not only shed light on the fundamental mechanisms governing charge storage and transfer within these unique architectures but also provide valuable insights for the rational and green design of next-generation organic electrode-based supercapacitors with enhanced energy storage capabilities.Fil: Karaman, Ceren. Institut Catalá de Nanociencia I Nanotecnología; España. Akdeniz University; TurquíaFil: Bengoa, Leandro Nicolás. Institut Catalá de Nanociencia I Nanotecnología; España. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; ArgentinaFil: Gonzalez Gil, Rosa M.. Institut Catalá de Nanociencia I Nanotecnología; EspañaFil: Gómez-romero, Pedro. Institut Catalá de Nanociencia I Nanotecnología; EspañaPergamon-Elsevier Science Ltd2025-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263295Karaman, Ceren; Bengoa, Leandro Nicolás; Gonzalez Gil, Rosa M. ; Gómez-romero, Pedro; Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 512; 145414; 2-2025; 1-120013-4686CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0013468624016505info:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2024.145414info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:44Zoai:ri.conicet.gov.ar:11336/263295instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:45.291CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors |
title |
Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors |
spellingShingle |
Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors Karaman, Ceren QUINONE SUPERCAPACITORS HYBRID GRAPHENE |
title_short |
Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors |
title_full |
Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors |
title_fullStr |
Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors |
title_full_unstemmed |
Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors |
title_sort |
Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors |
dc.creator.none.fl_str_mv |
Karaman, Ceren Bengoa, Leandro Nicolás Gonzalez Gil, Rosa M. Gómez-romero, Pedro |
author |
Karaman, Ceren |
author_facet |
Karaman, Ceren Bengoa, Leandro Nicolás Gonzalez Gil, Rosa M. Gómez-romero, Pedro |
author_role |
author |
author2 |
Bengoa, Leandro Nicolás Gonzalez Gil, Rosa M. Gómez-romero, Pedro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
QUINONE SUPERCAPACITORS HYBRID GRAPHENE |
topic |
QUINONE SUPERCAPACITORS HYBRID GRAPHENE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the pursuit of advancing energy storage technologies, the exploration of novel electrode materials for supercapacitors, specifically organic materials, has garnered significant attention. This work delves into the electrochemical performance of quinone-anchored three-dimensional (3D) graphene (3DG) architectures as potential electrode materials for high-energy supercapacitors, focusing on elucidating the influence of different quinone types including 1,4-naphthoquinone (NQ), anthraquinone (AQ), duraquinone (DQ), p-benzoquinone (BQ), 2,5-dimethyl-1,4-benzoquinone (DMBQ), and sodium anthraquinone-2-sulfonate (SAQS). To that end, various quinone-anchored three-dimensional graphene (Q_3DG) architectures were synthesized via a chemical reduction-induced self-assembly technique in the presence of l-ascorbic acid, a green reducing agent. The physicochemical characterizations confirmed the successful incorporation of quinones to the carbon structure, without the presence of any impurities. Different interaction mechanisms between graphene oxide (GO) and quinone molecules during the synthesis led to different surface morphologies, which affected their electrochemical behavior. The 3-electrode electrochemical characterizations in 1.0 M Na2SO4 electrolyte revealed that all Q_3DG structures exhibited superior electrochemical performance compared to GO, as well as to a Bare_3DG sample synthesized without quinone molecules. NQ anchored 3DG (NQ_3DG) network yielded the highest specific capacitance value of 386.3 F.g−1 at 10 mV.s−1, which was almost 50 times larger than that of Bare_3DG. The findings not only shed light on the fundamental mechanisms governing charge storage and transfer within these unique architectures but also provide valuable insights for the rational and green design of next-generation organic electrode-based supercapacitors with enhanced energy storage capabilities. Fil: Karaman, Ceren. Institut Catalá de Nanociencia I Nanotecnología; España. Akdeniz University; Turquía Fil: Bengoa, Leandro Nicolás. Institut Catalá de Nanociencia I Nanotecnología; España. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; Argentina Fil: Gonzalez Gil, Rosa M.. Institut Catalá de Nanociencia I Nanotecnología; España Fil: Gómez-romero, Pedro. Institut Catalá de Nanociencia I Nanotecnología; España |
description |
In the pursuit of advancing energy storage technologies, the exploration of novel electrode materials for supercapacitors, specifically organic materials, has garnered significant attention. This work delves into the electrochemical performance of quinone-anchored three-dimensional (3D) graphene (3DG) architectures as potential electrode materials for high-energy supercapacitors, focusing on elucidating the influence of different quinone types including 1,4-naphthoquinone (NQ), anthraquinone (AQ), duraquinone (DQ), p-benzoquinone (BQ), 2,5-dimethyl-1,4-benzoquinone (DMBQ), and sodium anthraquinone-2-sulfonate (SAQS). To that end, various quinone-anchored three-dimensional graphene (Q_3DG) architectures were synthesized via a chemical reduction-induced self-assembly technique in the presence of l-ascorbic acid, a green reducing agent. The physicochemical characterizations confirmed the successful incorporation of quinones to the carbon structure, without the presence of any impurities. Different interaction mechanisms between graphene oxide (GO) and quinone molecules during the synthesis led to different surface morphologies, which affected their electrochemical behavior. The 3-electrode electrochemical characterizations in 1.0 M Na2SO4 electrolyte revealed that all Q_3DG structures exhibited superior electrochemical performance compared to GO, as well as to a Bare_3DG sample synthesized without quinone molecules. NQ anchored 3DG (NQ_3DG) network yielded the highest specific capacitance value of 386.3 F.g−1 at 10 mV.s−1, which was almost 50 times larger than that of Bare_3DG. The findings not only shed light on the fundamental mechanisms governing charge storage and transfer within these unique architectures but also provide valuable insights for the rational and green design of next-generation organic electrode-based supercapacitors with enhanced energy storage capabilities. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/263295 Karaman, Ceren; Bengoa, Leandro Nicolás; Gonzalez Gil, Rosa M. ; Gómez-romero, Pedro; Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 512; 145414; 2-2025; 1-12 0013-4686 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/263295 |
identifier_str_mv |
Karaman, Ceren; Bengoa, Leandro Nicolás; Gonzalez Gil, Rosa M. ; Gómez-romero, Pedro; Quinone Quest: Unraveling electrochemical performance in quinone-anchored 3D graphene architectures for high-energy supercapacitors; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 512; 145414; 2-2025; 1-12 0013-4686 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0013468624016505 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2024.145414 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270056306704384 |
score |
13.13397 |