Localization of semi-Heyting algebras
- Autores
- Figallo, Aldo Victorio; Pelaitay, Gustavo Andrés
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this note, we introduce the notion of ideal on semi-Heyting algebras which allows us to consider a topology on them. Besides, we define the concept of F−multiplier, where F is a topology on a semi-Heyting algebra L, which is used to construct the localization semi-Heyting algebra LF. Furthermore, we prove that the semi-Heyting algebra of fractions LS associated with an ∧−closed system S of L is a semi-Heyting of localization. Finally, in the finite case we prove that LS is isomorphic to a special subalgebra of L. Since Heyting algebras are a particular case of semi-Heyting algebras, all these results generalize those obtained in [11].
Fil: Figallo, Aldo Victorio. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina
Fil: Pelaitay, Gustavo Andrés. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Departamento de Matemática; Argentina - Materia
-
LOCALIZATION
F-MULTIPLIERS
SEMI-HEYTING ALGEBRAS
∧−CLOSED SYSTEM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/99879
Ver los metadatos del registro completo
id |
CONICETDig_9ccd70163b15bf030e2ce336f8923b2a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/99879 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Localization of semi-Heyting algebrasFigallo, Aldo VictorioPelaitay, Gustavo AndrésLOCALIZATIONF-MULTIPLIERSSEMI-HEYTING ALGEBRAS∧−CLOSED SYSTEMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this note, we introduce the notion of ideal on semi-Heyting algebras which allows us to consider a topology on them. Besides, we define the concept of F−multiplier, where F is a topology on a semi-Heyting algebra L, which is used to construct the localization semi-Heyting algebra LF. Furthermore, we prove that the semi-Heyting algebra of fractions LS associated with an ∧−closed system S of L is a semi-Heyting of localization. Finally, in the finite case we prove that LS is isomorphic to a special subalgebra of L. Since Heyting algebras are a particular case of semi-Heyting algebras, all these results generalize those obtained in [11].Fil: Figallo, Aldo Victorio. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; ArgentinaFil: Pelaitay, Gustavo Andrés. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Departamento de Matemática; ArgentinaUniversity of Craiova2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99879Figallo, Aldo Victorio; Pelaitay, Gustavo Andrés; Localization of semi-Heyting algebras; University of Craiova; Annals of the University of Craiova; 43; 2; 12-2016; 210-2171223-6934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inf.ucv.ro/~ami/index.php/ami/article/view/717/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:40Zoai:ri.conicet.gov.ar:11336/99879instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:40.509CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Localization of semi-Heyting algebras |
title |
Localization of semi-Heyting algebras |
spellingShingle |
Localization of semi-Heyting algebras Figallo, Aldo Victorio LOCALIZATION F-MULTIPLIERS SEMI-HEYTING ALGEBRAS ∧−CLOSED SYSTEM |
title_short |
Localization of semi-Heyting algebras |
title_full |
Localization of semi-Heyting algebras |
title_fullStr |
Localization of semi-Heyting algebras |
title_full_unstemmed |
Localization of semi-Heyting algebras |
title_sort |
Localization of semi-Heyting algebras |
dc.creator.none.fl_str_mv |
Figallo, Aldo Victorio Pelaitay, Gustavo Andrés |
author |
Figallo, Aldo Victorio |
author_facet |
Figallo, Aldo Victorio Pelaitay, Gustavo Andrés |
author_role |
author |
author2 |
Pelaitay, Gustavo Andrés |
author2_role |
author |
dc.subject.none.fl_str_mv |
LOCALIZATION F-MULTIPLIERS SEMI-HEYTING ALGEBRAS ∧−CLOSED SYSTEM |
topic |
LOCALIZATION F-MULTIPLIERS SEMI-HEYTING ALGEBRAS ∧−CLOSED SYSTEM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this note, we introduce the notion of ideal on semi-Heyting algebras which allows us to consider a topology on them. Besides, we define the concept of F−multiplier, where F is a topology on a semi-Heyting algebra L, which is used to construct the localization semi-Heyting algebra LF. Furthermore, we prove that the semi-Heyting algebra of fractions LS associated with an ∧−closed system S of L is a semi-Heyting of localization. Finally, in the finite case we prove that LS is isomorphic to a special subalgebra of L. Since Heyting algebras are a particular case of semi-Heyting algebras, all these results generalize those obtained in [11]. Fil: Figallo, Aldo Victorio. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina Fil: Pelaitay, Gustavo Andrés. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Departamento de Matemática; Argentina |
description |
In this note, we introduce the notion of ideal on semi-Heyting algebras which allows us to consider a topology on them. Besides, we define the concept of F−multiplier, where F is a topology on a semi-Heyting algebra L, which is used to construct the localization semi-Heyting algebra LF. Furthermore, we prove that the semi-Heyting algebra of fractions LS associated with an ∧−closed system S of L is a semi-Heyting of localization. Finally, in the finite case we prove that LS is isomorphic to a special subalgebra of L. Since Heyting algebras are a particular case of semi-Heyting algebras, all these results generalize those obtained in [11]. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/99879 Figallo, Aldo Victorio; Pelaitay, Gustavo Andrés; Localization of semi-Heyting algebras; University of Craiova; Annals of the University of Craiova; 43; 2; 12-2016; 210-217 1223-6934 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/99879 |
identifier_str_mv |
Figallo, Aldo Victorio; Pelaitay, Gustavo Andrés; Localization of semi-Heyting algebras; University of Craiova; Annals of the University of Craiova; 43; 2; 12-2016; 210-217 1223-6934 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://inf.ucv.ro/~ami/index.php/ami/article/view/717/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
University of Craiova |
publisher.none.fl_str_mv |
University of Craiova |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269594304118784 |
score |
13.13397 |