Theory of intermittency applied to classical pathological cases
- Autores
- del Rio, Ezequiel; Elaskar, Sergio Amado; Makarov, Valeri A.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Though it works fine in some model systems, there exist a number of so-called pathological cases characterized by a significant deviation of main characteristics from the values predicted on the basis of the uniform distribution. Recently, we reported on how the reinjection probability density (RPD) can be generalized. Here, we extend this methodology and apply it to different dynamical systems exhibiting anomalous type-II and type-III intermittencies. Estimation of the universal RPD is based on fitting a linear function to experimental data and requires no a priori knowledge on the dynamical model behind. We provide special fitting procedure that enables robust estimation of the RPD from relatively short data sets (dozens of points). Thus, the method is applicable for a wide variety of data sets including numerical simulations and real-life experiments. Estimated RPD enables analytic evaluation of the length of the laminar phase of intermittent behaviors. We show that the method copes well with dynamical systems exhibiting significantly different statistics reported in the literature. We also derive and classify characteristic relations between the mean laminar length and main controlling parameter in perfect agreement with data provided by numerical simulations.
 Fil: del Rio, Ezequiel. Universidad Politécnica de Madrid; España
 Fil: Elaskar, Sergio Amado. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
 Fil: Makarov, Valeri A.. Universidad Complutense de Madrid; España
- Materia
- 
            
        Intermittency
 Phatological cases
 RPD
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg) 
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/23527
Ver los metadatos del registro completo
| id | CONICETDig_9cafcff627bc86115edd4c7611f18118 | 
|---|---|
| oai_identifier_str | oai:ri.conicet.gov.ar:11336/23527 | 
| network_acronym_str | CONICETDig | 
| repository_id_str | 3498 | 
| network_name_str | CONICET Digital (CONICET) | 
| spelling | Theory of intermittency applied to classical pathological casesdel Rio, EzequielElaskar, Sergio AmadoMakarov, Valeri A.IntermittencyPhatological casesRPDhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Though it works fine in some model systems, there exist a number of so-called pathological cases characterized by a significant deviation of main characteristics from the values predicted on the basis of the uniform distribution. Recently, we reported on how the reinjection probability density (RPD) can be generalized. Here, we extend this methodology and apply it to different dynamical systems exhibiting anomalous type-II and type-III intermittencies. Estimation of the universal RPD is based on fitting a linear function to experimental data and requires no a priori knowledge on the dynamical model behind. We provide special fitting procedure that enables robust estimation of the RPD from relatively short data sets (dozens of points). Thus, the method is applicable for a wide variety of data sets including numerical simulations and real-life experiments. Estimated RPD enables analytic evaluation of the length of the laminar phase of intermittent behaviors. We show that the method copes well with dynamical systems exhibiting significantly different statistics reported in the literature. We also derive and classify characteristic relations between the mean laminar length and main controlling parameter in perfect agreement with data provided by numerical simulations.Fil: del Rio, Ezequiel. Universidad Politécnica de Madrid; EspañaFil: Elaskar, Sergio Amado. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Makarov, Valeri A.. Universidad Complutense de Madrid; EspañaAmerican Institute of Physics2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23527del Rio, Ezequiel; Elaskar, Sergio Amado; Makarov, Valeri A.; Theory of intermittency applied to classical pathological cases; American Institute of Physics; Chaos An Interdisciplinary Jr Of Nonlinear Science; 23; 7-2013; 1-11; 0331121054-1500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4813857info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4813857info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:20:07Zoai:ri.conicet.gov.ar:11336/23527instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:20:07.377CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse | 
| dc.title.none.fl_str_mv | Theory of intermittency applied to classical pathological cases | 
| title | Theory of intermittency applied to classical pathological cases | 
| spellingShingle | Theory of intermittency applied to classical pathological cases del Rio, Ezequiel Intermittency Phatological cases RPD | 
| title_short | Theory of intermittency applied to classical pathological cases | 
| title_full | Theory of intermittency applied to classical pathological cases | 
| title_fullStr | Theory of intermittency applied to classical pathological cases | 
| title_full_unstemmed | Theory of intermittency applied to classical pathological cases | 
| title_sort | Theory of intermittency applied to classical pathological cases | 
| dc.creator.none.fl_str_mv | del Rio, Ezequiel Elaskar, Sergio Amado Makarov, Valeri A. | 
| author | del Rio, Ezequiel | 
| author_facet | del Rio, Ezequiel Elaskar, Sergio Amado Makarov, Valeri A. | 
| author_role | author | 
| author2 | Elaskar, Sergio Amado Makarov, Valeri A. | 
| author2_role | author author | 
| dc.subject.none.fl_str_mv | Intermittency Phatological cases RPD | 
| topic | Intermittency Phatological cases RPD | 
| purl_subject.fl_str_mv | https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 | 
| dc.description.none.fl_txt_mv | The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Though it works fine in some model systems, there exist a number of so-called pathological cases characterized by a significant deviation of main characteristics from the values predicted on the basis of the uniform distribution. Recently, we reported on how the reinjection probability density (RPD) can be generalized. Here, we extend this methodology and apply it to different dynamical systems exhibiting anomalous type-II and type-III intermittencies. Estimation of the universal RPD is based on fitting a linear function to experimental data and requires no a priori knowledge on the dynamical model behind. We provide special fitting procedure that enables robust estimation of the RPD from relatively short data sets (dozens of points). Thus, the method is applicable for a wide variety of data sets including numerical simulations and real-life experiments. Estimated RPD enables analytic evaluation of the length of the laminar phase of intermittent behaviors. We show that the method copes well with dynamical systems exhibiting significantly different statistics reported in the literature. We also derive and classify characteristic relations between the mean laminar length and main controlling parameter in perfect agreement with data provided by numerical simulations. Fil: del Rio, Ezequiel. Universidad Politécnica de Madrid; España Fil: Elaskar, Sergio Amado. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Makarov, Valeri A.. Universidad Complutense de Madrid; España | 
| description | The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Though it works fine in some model systems, there exist a number of so-called pathological cases characterized by a significant deviation of main characteristics from the values predicted on the basis of the uniform distribution. Recently, we reported on how the reinjection probability density (RPD) can be generalized. Here, we extend this methodology and apply it to different dynamical systems exhibiting anomalous type-II and type-III intermittencies. Estimation of the universal RPD is based on fitting a linear function to experimental data and requires no a priori knowledge on the dynamical model behind. We provide special fitting procedure that enables robust estimation of the RPD from relatively short data sets (dozens of points). Thus, the method is applicable for a wide variety of data sets including numerical simulations and real-life experiments. Estimated RPD enables analytic evaluation of the length of the laminar phase of intermittent behaviors. We show that the method copes well with dynamical systems exhibiting significantly different statistics reported in the literature. We also derive and classify characteristic relations between the mean laminar length and main controlling parameter in perfect agreement with data provided by numerical simulations. | 
| publishDate | 2013 | 
| dc.date.none.fl_str_mv | 2013-07 | 
| dc.type.none.fl_str_mv | info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo | 
| format | article | 
| status_str | publishedVersion | 
| dc.identifier.none.fl_str_mv | http://hdl.handle.net/11336/23527 del Rio, Ezequiel; Elaskar, Sergio Amado; Makarov, Valeri A.; Theory of intermittency applied to classical pathological cases; American Institute of Physics; Chaos An Interdisciplinary Jr Of Nonlinear Science; 23; 7-2013; 1-11; 033112 1054-1500 CONICET Digital CONICET | 
| url | http://hdl.handle.net/11336/23527 | 
| identifier_str_mv | del Rio, Ezequiel; Elaskar, Sergio Amado; Makarov, Valeri A.; Theory of intermittency applied to classical pathological cases; American Institute of Physics; Chaos An Interdisciplinary Jr Of Nonlinear Science; 23; 7-2013; 1-11; 033112 1054-1500 CONICET Digital CONICET | 
| dc.language.none.fl_str_mv | eng | 
| language | eng | 
| dc.relation.none.fl_str_mv | info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4813857 info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4813857 | 
| dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | 
| eu_rights_str_mv | openAccess | 
| rights_invalid_str_mv | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | 
| dc.format.none.fl_str_mv | application/pdf application/pdf | 
| dc.publisher.none.fl_str_mv | American Institute of Physics | 
| publisher.none.fl_str_mv | American Institute of Physics | 
| dc.source.none.fl_str_mv | reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas | 
| reponame_str | CONICET Digital (CONICET) | 
| collection | CONICET Digital (CONICET) | 
| instname_str | Consejo Nacional de Investigaciones Científicas y Técnicas | 
| repository.name.fl_str_mv | CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas | 
| repository.mail.fl_str_mv | dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar | 
| _version_ | 1847426134910697472 | 
| score | 13.10058 |