Theory of intermittency applied to classical pathological cases

Autores
del Rio, Ezequiel; Elaskar, Sergio Amado; Makarov, Valeri A.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Though it works fine in some model systems, there exist a number of so-called pathological cases characterized by a significant deviation of main characteristics from the values predicted on the basis of the uniform distribution. Recently, we reported on how the reinjection probability density (RPD) can be generalized. Here, we extend this methodology and apply it to different dynamical systems exhibiting anomalous type-II and type-III intermittencies. Estimation of the universal RPD is based on fitting a linear function to experimental data and requires no a priori knowledge on the dynamical model behind. We provide special fitting procedure that enables robust estimation of the RPD from relatively short data sets (dozens of points). Thus, the method is applicable for a wide variety of data sets including numerical simulations and real-life experiments. Estimated RPD enables analytic evaluation of the length of the laminar phase of intermittent behaviors. We show that the method copes well with dynamical systems exhibiting significantly different statistics reported in the literature. We also derive and classify characteristic relations between the mean laminar length and main controlling parameter in perfect agreement with data provided by numerical simulations.
Fil: del Rio, Ezequiel. Universidad Politécnica de Madrid; España
Fil: Elaskar, Sergio Amado. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Makarov, Valeri A.. Universidad Complutense de Madrid; España
Materia
Intermittency
Phatological cases
RPD
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23527

id CONICETDig_9cafcff627bc86115edd4c7611f18118
oai_identifier_str oai:ri.conicet.gov.ar:11336/23527
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Theory of intermittency applied to classical pathological casesdel Rio, EzequielElaskar, Sergio AmadoMakarov, Valeri A.IntermittencyPhatological casesRPDhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Though it works fine in some model systems, there exist a number of so-called pathological cases characterized by a significant deviation of main characteristics from the values predicted on the basis of the uniform distribution. Recently, we reported on how the reinjection probability density (RPD) can be generalized. Here, we extend this methodology and apply it to different dynamical systems exhibiting anomalous type-II and type-III intermittencies. Estimation of the universal RPD is based on fitting a linear function to experimental data and requires no a priori knowledge on the dynamical model behind. We provide special fitting procedure that enables robust estimation of the RPD from relatively short data sets (dozens of points). Thus, the method is applicable for a wide variety of data sets including numerical simulations and real-life experiments. Estimated RPD enables analytic evaluation of the length of the laminar phase of intermittent behaviors. We show that the method copes well with dynamical systems exhibiting significantly different statistics reported in the literature. We also derive and classify characteristic relations between the mean laminar length and main controlling parameter in perfect agreement with data provided by numerical simulations.Fil: del Rio, Ezequiel. Universidad Politécnica de Madrid; EspañaFil: Elaskar, Sergio Amado. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Makarov, Valeri A.. Universidad Complutense de Madrid; EspañaAmerican Institute of Physics2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23527del Rio, Ezequiel; Elaskar, Sergio Amado; Makarov, Valeri A.; Theory of intermittency applied to classical pathological cases; American Institute of Physics; Chaos An Interdisciplinary Jr Of Nonlinear Science; 23; 7-2013; 1-11; 0331121054-1500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4813857info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4813857info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:20:07Zoai:ri.conicet.gov.ar:11336/23527instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:20:07.377CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Theory of intermittency applied to classical pathological cases
title Theory of intermittency applied to classical pathological cases
spellingShingle Theory of intermittency applied to classical pathological cases
del Rio, Ezequiel
Intermittency
Phatological cases
RPD
title_short Theory of intermittency applied to classical pathological cases
title_full Theory of intermittency applied to classical pathological cases
title_fullStr Theory of intermittency applied to classical pathological cases
title_full_unstemmed Theory of intermittency applied to classical pathological cases
title_sort Theory of intermittency applied to classical pathological cases
dc.creator.none.fl_str_mv del Rio, Ezequiel
Elaskar, Sergio Amado
Makarov, Valeri A.
author del Rio, Ezequiel
author_facet del Rio, Ezequiel
Elaskar, Sergio Amado
Makarov, Valeri A.
author_role author
author2 Elaskar, Sergio Amado
Makarov, Valeri A.
author2_role author
author
dc.subject.none.fl_str_mv Intermittency
Phatological cases
RPD
topic Intermittency
Phatological cases
RPD
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Though it works fine in some model systems, there exist a number of so-called pathological cases characterized by a significant deviation of main characteristics from the values predicted on the basis of the uniform distribution. Recently, we reported on how the reinjection probability density (RPD) can be generalized. Here, we extend this methodology and apply it to different dynamical systems exhibiting anomalous type-II and type-III intermittencies. Estimation of the universal RPD is based on fitting a linear function to experimental data and requires no a priori knowledge on the dynamical model behind. We provide special fitting procedure that enables robust estimation of the RPD from relatively short data sets (dozens of points). Thus, the method is applicable for a wide variety of data sets including numerical simulations and real-life experiments. Estimated RPD enables analytic evaluation of the length of the laminar phase of intermittent behaviors. We show that the method copes well with dynamical systems exhibiting significantly different statistics reported in the literature. We also derive and classify characteristic relations between the mean laminar length and main controlling parameter in perfect agreement with data provided by numerical simulations.
Fil: del Rio, Ezequiel. Universidad Politécnica de Madrid; España
Fil: Elaskar, Sergio Amado. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Makarov, Valeri A.. Universidad Complutense de Madrid; España
description The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Though it works fine in some model systems, there exist a number of so-called pathological cases characterized by a significant deviation of main characteristics from the values predicted on the basis of the uniform distribution. Recently, we reported on how the reinjection probability density (RPD) can be generalized. Here, we extend this methodology and apply it to different dynamical systems exhibiting anomalous type-II and type-III intermittencies. Estimation of the universal RPD is based on fitting a linear function to experimental data and requires no a priori knowledge on the dynamical model behind. We provide special fitting procedure that enables robust estimation of the RPD from relatively short data sets (dozens of points). Thus, the method is applicable for a wide variety of data sets including numerical simulations and real-life experiments. Estimated RPD enables analytic evaluation of the length of the laminar phase of intermittent behaviors. We show that the method copes well with dynamical systems exhibiting significantly different statistics reported in the literature. We also derive and classify characteristic relations between the mean laminar length and main controlling parameter in perfect agreement with data provided by numerical simulations.
publishDate 2013
dc.date.none.fl_str_mv 2013-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23527
del Rio, Ezequiel; Elaskar, Sergio Amado; Makarov, Valeri A.; Theory of intermittency applied to classical pathological cases; American Institute of Physics; Chaos An Interdisciplinary Jr Of Nonlinear Science; 23; 7-2013; 1-11; 033112
1054-1500
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23527
identifier_str_mv del Rio, Ezequiel; Elaskar, Sergio Amado; Makarov, Valeri A.; Theory of intermittency applied to classical pathological cases; American Institute of Physics; Chaos An Interdisciplinary Jr Of Nonlinear Science; 23; 7-2013; 1-11; 033112
1054-1500
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4813857
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4813857
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847426134910697472
score 13.10058