On the Theory of Intermittency in 1D Maps

Autores
Del Rio, Ezequiel; Elaskar, Sergio Amado
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Recently, we reported how the reinjection probability density (RPD) can be generalized. Estimation of the universal RPD is based on fitting a linear function to experimental or numerical data. Here we present an analytical approach to estimate the RPD. After this, we can get an analytic evaluation of the characteristic exponent traditionally used to characterize the intermittency type. The proposed theoretical method is general and very simple to use. It is compared with numerical computation, showing a good agreement between both. Our analytical results are compared with some celebrated classical numerical results on intermittency theory.
Fil: Del Rio, Ezequiel. Universidad Politécnica de Madrid; España
Fil: Elaskar, Sergio Amado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados En Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias exactas Físicas y Naturales. Instituto de Estudios Avanzados En Ingeniería y Tecnología; Argentina
Materia
Chaos
Intermittency
One-Dimensional Map
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/72514

id CONICETDig_6cfe520a671686d1e8621aff7afd0f5e
oai_identifier_str oai:ri.conicet.gov.ar:11336/72514
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the Theory of Intermittency in 1D MapsDel Rio, EzequielElaskar, Sergio AmadoChaosIntermittencyOne-Dimensional Maphttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Recently, we reported how the reinjection probability density (RPD) can be generalized. Estimation of the universal RPD is based on fitting a linear function to experimental or numerical data. Here we present an analytical approach to estimate the RPD. After this, we can get an analytic evaluation of the characteristic exponent traditionally used to characterize the intermittency type. The proposed theoretical method is general and very simple to use. It is compared with numerical computation, showing a good agreement between both. Our analytical results are compared with some celebrated classical numerical results on intermittency theory.Fil: Del Rio, Ezequiel. Universidad Politécnica de Madrid; EspañaFil: Elaskar, Sergio Amado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados En Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias exactas Físicas y Naturales. Instituto de Estudios Avanzados En Ingeniería y Tecnología; ArgentinaWorld Scientific2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72514Del Rio, Ezequiel; Elaskar, Sergio Amado; On the Theory of Intermittency in 1D Maps; World Scientific; International Journal Of Bifurcation And Chaos; 26; 14; 12-2016; 1-11; 16502280218-1274CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S021812741650228Xinfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/10.1142/S021812741650228Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:12Zoai:ri.conicet.gov.ar:11336/72514instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:12.982CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the Theory of Intermittency in 1D Maps
title On the Theory of Intermittency in 1D Maps
spellingShingle On the Theory of Intermittency in 1D Maps
Del Rio, Ezequiel
Chaos
Intermittency
One-Dimensional Map
title_short On the Theory of Intermittency in 1D Maps
title_full On the Theory of Intermittency in 1D Maps
title_fullStr On the Theory of Intermittency in 1D Maps
title_full_unstemmed On the Theory of Intermittency in 1D Maps
title_sort On the Theory of Intermittency in 1D Maps
dc.creator.none.fl_str_mv Del Rio, Ezequiel
Elaskar, Sergio Amado
author Del Rio, Ezequiel
author_facet Del Rio, Ezequiel
Elaskar, Sergio Amado
author_role author
author2 Elaskar, Sergio Amado
author2_role author
dc.subject.none.fl_str_mv Chaos
Intermittency
One-Dimensional Map
topic Chaos
Intermittency
One-Dimensional Map
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Recently, we reported how the reinjection probability density (RPD) can be generalized. Estimation of the universal RPD is based on fitting a linear function to experimental or numerical data. Here we present an analytical approach to estimate the RPD. After this, we can get an analytic evaluation of the characteristic exponent traditionally used to characterize the intermittency type. The proposed theoretical method is general and very simple to use. It is compared with numerical computation, showing a good agreement between both. Our analytical results are compared with some celebrated classical numerical results on intermittency theory.
Fil: Del Rio, Ezequiel. Universidad Politécnica de Madrid; España
Fil: Elaskar, Sergio Amado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados En Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias exactas Físicas y Naturales. Instituto de Estudios Avanzados En Ingeniería y Tecnología; Argentina
description The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Recently, we reported how the reinjection probability density (RPD) can be generalized. Estimation of the universal RPD is based on fitting a linear function to experimental or numerical data. Here we present an analytical approach to estimate the RPD. After this, we can get an analytic evaluation of the characteristic exponent traditionally used to characterize the intermittency type. The proposed theoretical method is general and very simple to use. It is compared with numerical computation, showing a good agreement between both. Our analytical results are compared with some celebrated classical numerical results on intermittency theory.
publishDate 2016
dc.date.none.fl_str_mv 2016-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/72514
Del Rio, Ezequiel; Elaskar, Sergio Amado; On the Theory of Intermittency in 1D Maps; World Scientific; International Journal Of Bifurcation And Chaos; 26; 14; 12-2016; 1-11; 1650228
0218-1274
CONICET Digital
CONICET
url http://hdl.handle.net/11336/72514
identifier_str_mv Del Rio, Ezequiel; Elaskar, Sergio Amado; On the Theory of Intermittency in 1D Maps; World Scientific; International Journal Of Bifurcation And Chaos; 26; 14; 12-2016; 1-11; 1650228
0218-1274
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S021812741650228X
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/10.1142/S021812741650228X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613239968628736
score 13.070432