On the Theory of Intermittency in 1D Maps
- Autores
- Del Rio, Ezequiel; Elaskar, Sergio Amado
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Recently, we reported how the reinjection probability density (RPD) can be generalized. Estimation of the universal RPD is based on fitting a linear function to experimental or numerical data. Here we present an analytical approach to estimate the RPD. After this, we can get an analytic evaluation of the characteristic exponent traditionally used to characterize the intermittency type. The proposed theoretical method is general and very simple to use. It is compared with numerical computation, showing a good agreement between both. Our analytical results are compared with some celebrated classical numerical results on intermittency theory.
Fil: Del Rio, Ezequiel. Universidad Politécnica de Madrid; España
Fil: Elaskar, Sergio Amado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados En Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias exactas Físicas y Naturales. Instituto de Estudios Avanzados En Ingeniería y Tecnología; Argentina - Materia
-
Chaos
Intermittency
One-Dimensional Map - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/72514
Ver los metadatos del registro completo
id |
CONICETDig_6cfe520a671686d1e8621aff7afd0f5e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/72514 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the Theory of Intermittency in 1D MapsDel Rio, EzequielElaskar, Sergio AmadoChaosIntermittencyOne-Dimensional Maphttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Recently, we reported how the reinjection probability density (RPD) can be generalized. Estimation of the universal RPD is based on fitting a linear function to experimental or numerical data. Here we present an analytical approach to estimate the RPD. After this, we can get an analytic evaluation of the characteristic exponent traditionally used to characterize the intermittency type. The proposed theoretical method is general and very simple to use. It is compared with numerical computation, showing a good agreement between both. Our analytical results are compared with some celebrated classical numerical results on intermittency theory.Fil: Del Rio, Ezequiel. Universidad Politécnica de Madrid; EspañaFil: Elaskar, Sergio Amado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados En Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias exactas Físicas y Naturales. Instituto de Estudios Avanzados En Ingeniería y Tecnología; ArgentinaWorld Scientific2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72514Del Rio, Ezequiel; Elaskar, Sergio Amado; On the Theory of Intermittency in 1D Maps; World Scientific; International Journal Of Bifurcation And Chaos; 26; 14; 12-2016; 1-11; 16502280218-1274CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S021812741650228Xinfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/10.1142/S021812741650228Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:12Zoai:ri.conicet.gov.ar:11336/72514instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:12.982CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the Theory of Intermittency in 1D Maps |
title |
On the Theory of Intermittency in 1D Maps |
spellingShingle |
On the Theory of Intermittency in 1D Maps Del Rio, Ezequiel Chaos Intermittency One-Dimensional Map |
title_short |
On the Theory of Intermittency in 1D Maps |
title_full |
On the Theory of Intermittency in 1D Maps |
title_fullStr |
On the Theory of Intermittency in 1D Maps |
title_full_unstemmed |
On the Theory of Intermittency in 1D Maps |
title_sort |
On the Theory of Intermittency in 1D Maps |
dc.creator.none.fl_str_mv |
Del Rio, Ezequiel Elaskar, Sergio Amado |
author |
Del Rio, Ezequiel |
author_facet |
Del Rio, Ezequiel Elaskar, Sergio Amado |
author_role |
author |
author2 |
Elaskar, Sergio Amado |
author2_role |
author |
dc.subject.none.fl_str_mv |
Chaos Intermittency One-Dimensional Map |
topic |
Chaos Intermittency One-Dimensional Map |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Recently, we reported how the reinjection probability density (RPD) can be generalized. Estimation of the universal RPD is based on fitting a linear function to experimental or numerical data. Here we present an analytical approach to estimate the RPD. After this, we can get an analytic evaluation of the characteristic exponent traditionally used to characterize the intermittency type. The proposed theoretical method is general and very simple to use. It is compared with numerical computation, showing a good agreement between both. Our analytical results are compared with some celebrated classical numerical results on intermittency theory. Fil: Del Rio, Ezequiel. Universidad Politécnica de Madrid; España Fil: Elaskar, Sergio Amado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados En Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias exactas Físicas y Naturales. Instituto de Estudios Avanzados En Ingeniería y Tecnología; Argentina |
description |
The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Recently, we reported how the reinjection probability density (RPD) can be generalized. Estimation of the universal RPD is based on fitting a linear function to experimental or numerical data. Here we present an analytical approach to estimate the RPD. After this, we can get an analytic evaluation of the characteristic exponent traditionally used to characterize the intermittency type. The proposed theoretical method is general and very simple to use. It is compared with numerical computation, showing a good agreement between both. Our analytical results are compared with some celebrated classical numerical results on intermittency theory. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/72514 Del Rio, Ezequiel; Elaskar, Sergio Amado; On the Theory of Intermittency in 1D Maps; World Scientific; International Journal Of Bifurcation And Chaos; 26; 14; 12-2016; 1-11; 1650228 0218-1274 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/72514 |
identifier_str_mv |
Del Rio, Ezequiel; Elaskar, Sergio Amado; On the Theory of Intermittency in 1D Maps; World Scientific; International Journal Of Bifurcation And Chaos; 26; 14; 12-2016; 1-11; 1650228 0218-1274 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S021812741650228X info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/10.1142/S021812741650228X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613239968628736 |
score |
13.070432 |