Spatial distribution of soil mechanical strength in a controlled traffic farming system as determined by cone index and geostatistical techniques

Autores
Alesso, Carlos Agustín; Cipriotti, Pablo Ariel; Masola, María Josefina; Carrizo, Maria Eugenia; Imhoff, Silvia del Carmen; Rocha Meneses, L.; Antille, D. L.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Controlled traffic farming (CTF) is a mechanisation system in which all load-bearing wheels are confined to the least possible area of permanent traffic lanes and where crops are grown in permanent, non-trafficked beds. In well-designed systems, the area affected by traffic represents less than 15% of the total field cropped area. The extent and distribution of soil compaction at locations laterally outboard of the permanent traffic lanes may explain the performance of the crop on the rows located either side of the wheeling. This compaction is due to lateral displacement of soil caused by repetitive wheeling, the effect of soil-tyre interaction and the soil conditions (strength) at the time of traffic. The impact of compaction on crop rows adjacent to permanent traffic lanes is also dependent on the seasonal effect of weather, because of changes in soil water availability. This work was conducted to model the spatial distribution of soil mechanical strength under increasing number of tractor passes to simulate the soil conditions that may be encountered in CTF systems at locations near-permanent traffic lanes. The study was conducted on a Typic Argiudoll (26% clay, 72% silt, 2% sand) with four traffic intensities (0, 6, 12 and 18 passes) using a 120 HP tractor (overall mass: 6.3 Mg). Traffic treatments were applied to experimental plots using a completely randomized block design with three replications per treatment. The spatial distribution of soil strength within wheeled and non-wheeled zones was determined using a cone penetrometer (depth range: 0–300 mm) and geostatistical techniques. In all treatments, cone index showed a quadratic response with depth, which explained between 67% and 88% of the variation in soil strength. The number of tractor passes had no effect on the range of spatial dependence of residuals. No differences were observed in the proportion of grid cells where penetration resistance was greater than 2 MPa (considered to be the soil strength limit for root growth of most arable crops) between-traffic treatments, or wheeled and non-wheeled zones, respectively. The overall mean proportion (± 95% confidence interval) of grid cells (4.9 ± 4.5%) suggested that this measure has a relatively high variability and therefore may not be a reliable parameter to be used in the design of future experimental work.
Fil: Alesso, Carlos Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Agropecuarias del Litoral. Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral; Argentina
Fil: Cipriotti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Masola, María Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Agropecuarias del Litoral. Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral; Argentina
Fil: Carrizo, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Agropecuarias del Litoral. Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral; Argentina
Fil: Imhoff, Silvia del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Agropecuarias del Litoral. Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral; Argentina
Fil: Rocha Meneses, L.. Estonian University of Life Sciences. Institute of Technology; Estonia
Fil: Antille, D. L.. CSIRO Agriculture and Food; Australia
Materia
FIELD TRAFFIC
SOIL COMPACTION
SOIL MECHANICAL PROPERTIES
SOIL PENETRATION RESISTANCE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/169390

id CONICETDig_9c2b67e8a0720408bff4c2210333ea9e
oai_identifier_str oai:ri.conicet.gov.ar:11336/169390
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Spatial distribution of soil mechanical strength in a controlled traffic farming system as determined by cone index and geostatistical techniquesAlesso, Carlos AgustínCipriotti, Pablo ArielMasola, María JosefinaCarrizo, Maria EugeniaImhoff, Silvia del CarmenRocha Meneses, L.Antille, D. L.FIELD TRAFFICSOIL COMPACTIONSOIL MECHANICAL PROPERTIESSOIL PENETRATION RESISTANCEhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Controlled traffic farming (CTF) is a mechanisation system in which all load-bearing wheels are confined to the least possible area of permanent traffic lanes and where crops are grown in permanent, non-trafficked beds. In well-designed systems, the area affected by traffic represents less than 15% of the total field cropped area. The extent and distribution of soil compaction at locations laterally outboard of the permanent traffic lanes may explain the performance of the crop on the rows located either side of the wheeling. This compaction is due to lateral displacement of soil caused by repetitive wheeling, the effect of soil-tyre interaction and the soil conditions (strength) at the time of traffic. The impact of compaction on crop rows adjacent to permanent traffic lanes is also dependent on the seasonal effect of weather, because of changes in soil water availability. This work was conducted to model the spatial distribution of soil mechanical strength under increasing number of tractor passes to simulate the soil conditions that may be encountered in CTF systems at locations near-permanent traffic lanes. The study was conducted on a Typic Argiudoll (26% clay, 72% silt, 2% sand) with four traffic intensities (0, 6, 12 and 18 passes) using a 120 HP tractor (overall mass: 6.3 Mg). Traffic treatments were applied to experimental plots using a completely randomized block design with three replications per treatment. The spatial distribution of soil strength within wheeled and non-wheeled zones was determined using a cone penetrometer (depth range: 0–300 mm) and geostatistical techniques. In all treatments, cone index showed a quadratic response with depth, which explained between 67% and 88% of the variation in soil strength. The number of tractor passes had no effect on the range of spatial dependence of residuals. No differences were observed in the proportion of grid cells where penetration resistance was greater than 2 MPa (considered to be the soil strength limit for root growth of most arable crops) between-traffic treatments, or wheeled and non-wheeled zones, respectively. The overall mean proportion (± 95% confidence interval) of grid cells (4.9 ± 4.5%) suggested that this measure has a relatively high variability and therefore may not be a reliable parameter to be used in the design of future experimental work.Fil: Alesso, Carlos Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Agropecuarias del Litoral. Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral; ArgentinaFil: Cipriotti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Masola, María Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Agropecuarias del Litoral. Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral; ArgentinaFil: Carrizo, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Agropecuarias del Litoral. Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral; ArgentinaFil: Imhoff, Silvia del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Agropecuarias del Litoral. Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral; ArgentinaFil: Rocha Meneses, L.. Estonian University of Life Sciences. Institute of Technology; EstoniaFil: Antille, D. L.. CSIRO Agriculture and Food; AustraliaEesti Pollumajandusulikool2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/169390Alesso, Carlos Agustín; Cipriotti, Pablo Ariel; Masola, María Josefina; Carrizo, Maria Eugenia; Imhoff, Silvia del Carmen; et al.; Spatial distribution of soil mechanical strength in a controlled traffic farming system as determined by cone index and geostatistical techniques; Eesti Pollumajandusulikool; Agronomy Research; 18; Special Issue 2; 5-2020; 1115-11261406-894XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.15159/ar.20.133info:eu-repo/semantics/altIdentifier/url/https://dspace.emu.ee/xmlui/handle/10492/6057info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:58Zoai:ri.conicet.gov.ar:11336/169390instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:58.979CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Spatial distribution of soil mechanical strength in a controlled traffic farming system as determined by cone index and geostatistical techniques
title Spatial distribution of soil mechanical strength in a controlled traffic farming system as determined by cone index and geostatistical techniques
spellingShingle Spatial distribution of soil mechanical strength in a controlled traffic farming system as determined by cone index and geostatistical techniques
Alesso, Carlos Agustín
FIELD TRAFFIC
SOIL COMPACTION
SOIL MECHANICAL PROPERTIES
SOIL PENETRATION RESISTANCE
title_short Spatial distribution of soil mechanical strength in a controlled traffic farming system as determined by cone index and geostatistical techniques
title_full Spatial distribution of soil mechanical strength in a controlled traffic farming system as determined by cone index and geostatistical techniques
title_fullStr Spatial distribution of soil mechanical strength in a controlled traffic farming system as determined by cone index and geostatistical techniques
title_full_unstemmed Spatial distribution of soil mechanical strength in a controlled traffic farming system as determined by cone index and geostatistical techniques
title_sort Spatial distribution of soil mechanical strength in a controlled traffic farming system as determined by cone index and geostatistical techniques
dc.creator.none.fl_str_mv Alesso, Carlos Agustín
Cipriotti, Pablo Ariel
Masola, María Josefina
Carrizo, Maria Eugenia
Imhoff, Silvia del Carmen
Rocha Meneses, L.
Antille, D. L.
author Alesso, Carlos Agustín
author_facet Alesso, Carlos Agustín
Cipriotti, Pablo Ariel
Masola, María Josefina
Carrizo, Maria Eugenia
Imhoff, Silvia del Carmen
Rocha Meneses, L.
Antille, D. L.
author_role author
author2 Cipriotti, Pablo Ariel
Masola, María Josefina
Carrizo, Maria Eugenia
Imhoff, Silvia del Carmen
Rocha Meneses, L.
Antille, D. L.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv FIELD TRAFFIC
SOIL COMPACTION
SOIL MECHANICAL PROPERTIES
SOIL PENETRATION RESISTANCE
topic FIELD TRAFFIC
SOIL COMPACTION
SOIL MECHANICAL PROPERTIES
SOIL PENETRATION RESISTANCE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Controlled traffic farming (CTF) is a mechanisation system in which all load-bearing wheels are confined to the least possible area of permanent traffic lanes and where crops are grown in permanent, non-trafficked beds. In well-designed systems, the area affected by traffic represents less than 15% of the total field cropped area. The extent and distribution of soil compaction at locations laterally outboard of the permanent traffic lanes may explain the performance of the crop on the rows located either side of the wheeling. This compaction is due to lateral displacement of soil caused by repetitive wheeling, the effect of soil-tyre interaction and the soil conditions (strength) at the time of traffic. The impact of compaction on crop rows adjacent to permanent traffic lanes is also dependent on the seasonal effect of weather, because of changes in soil water availability. This work was conducted to model the spatial distribution of soil mechanical strength under increasing number of tractor passes to simulate the soil conditions that may be encountered in CTF systems at locations near-permanent traffic lanes. The study was conducted on a Typic Argiudoll (26% clay, 72% silt, 2% sand) with four traffic intensities (0, 6, 12 and 18 passes) using a 120 HP tractor (overall mass: 6.3 Mg). Traffic treatments were applied to experimental plots using a completely randomized block design with three replications per treatment. The spatial distribution of soil strength within wheeled and non-wheeled zones was determined using a cone penetrometer (depth range: 0–300 mm) and geostatistical techniques. In all treatments, cone index showed a quadratic response with depth, which explained between 67% and 88% of the variation in soil strength. The number of tractor passes had no effect on the range of spatial dependence of residuals. No differences were observed in the proportion of grid cells where penetration resistance was greater than 2 MPa (considered to be the soil strength limit for root growth of most arable crops) between-traffic treatments, or wheeled and non-wheeled zones, respectively. The overall mean proportion (± 95% confidence interval) of grid cells (4.9 ± 4.5%) suggested that this measure has a relatively high variability and therefore may not be a reliable parameter to be used in the design of future experimental work.
Fil: Alesso, Carlos Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Agropecuarias del Litoral. Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral; Argentina
Fil: Cipriotti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Masola, María Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Agropecuarias del Litoral. Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral; Argentina
Fil: Carrizo, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Agropecuarias del Litoral. Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral; Argentina
Fil: Imhoff, Silvia del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Agropecuarias del Litoral. Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral; Argentina
Fil: Rocha Meneses, L.. Estonian University of Life Sciences. Institute of Technology; Estonia
Fil: Antille, D. L.. CSIRO Agriculture and Food; Australia
description Controlled traffic farming (CTF) is a mechanisation system in which all load-bearing wheels are confined to the least possible area of permanent traffic lanes and where crops are grown in permanent, non-trafficked beds. In well-designed systems, the area affected by traffic represents less than 15% of the total field cropped area. The extent and distribution of soil compaction at locations laterally outboard of the permanent traffic lanes may explain the performance of the crop on the rows located either side of the wheeling. This compaction is due to lateral displacement of soil caused by repetitive wheeling, the effect of soil-tyre interaction and the soil conditions (strength) at the time of traffic. The impact of compaction on crop rows adjacent to permanent traffic lanes is also dependent on the seasonal effect of weather, because of changes in soil water availability. This work was conducted to model the spatial distribution of soil mechanical strength under increasing number of tractor passes to simulate the soil conditions that may be encountered in CTF systems at locations near-permanent traffic lanes. The study was conducted on a Typic Argiudoll (26% clay, 72% silt, 2% sand) with four traffic intensities (0, 6, 12 and 18 passes) using a 120 HP tractor (overall mass: 6.3 Mg). Traffic treatments were applied to experimental plots using a completely randomized block design with three replications per treatment. The spatial distribution of soil strength within wheeled and non-wheeled zones was determined using a cone penetrometer (depth range: 0–300 mm) and geostatistical techniques. In all treatments, cone index showed a quadratic response with depth, which explained between 67% and 88% of the variation in soil strength. The number of tractor passes had no effect on the range of spatial dependence of residuals. No differences were observed in the proportion of grid cells where penetration resistance was greater than 2 MPa (considered to be the soil strength limit for root growth of most arable crops) between-traffic treatments, or wheeled and non-wheeled zones, respectively. The overall mean proportion (± 95% confidence interval) of grid cells (4.9 ± 4.5%) suggested that this measure has a relatively high variability and therefore may not be a reliable parameter to be used in the design of future experimental work.
publishDate 2020
dc.date.none.fl_str_mv 2020-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/169390
Alesso, Carlos Agustín; Cipriotti, Pablo Ariel; Masola, María Josefina; Carrizo, Maria Eugenia; Imhoff, Silvia del Carmen; et al.; Spatial distribution of soil mechanical strength in a controlled traffic farming system as determined by cone index and geostatistical techniques; Eesti Pollumajandusulikool; Agronomy Research; 18; Special Issue 2; 5-2020; 1115-1126
1406-894X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/169390
identifier_str_mv Alesso, Carlos Agustín; Cipriotti, Pablo Ariel; Masola, María Josefina; Carrizo, Maria Eugenia; Imhoff, Silvia del Carmen; et al.; Spatial distribution of soil mechanical strength in a controlled traffic farming system as determined by cone index and geostatistical techniques; Eesti Pollumajandusulikool; Agronomy Research; 18; Special Issue 2; 5-2020; 1115-1126
1406-894X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.15159/ar.20.133
info:eu-repo/semantics/altIdentifier/url/https://dspace.emu.ee/xmlui/handle/10492/6057
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Eesti Pollumajandusulikool
publisher.none.fl_str_mv Eesti Pollumajandusulikool
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270180312350720
score 13.13397