The importance of context-dependent learning in negotiation agents
- Autores
- Kröhling, Dan Ezequiel; Chiotti, Omar Juan Alfredo; Martínez, Ernesto Carlos
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Automated negotiation between artificial agents is essential to deploy Cognitive Computing and Internet of Things. In this sense, the behavior of those negotiation agents depend significantly on the influence of environmental variables, facts, and events, which made up the context of the negotiation game. This context affects not only a given agent preferences and strategies, but also those of his opponents. In spite of this, the existing literature on automated negotiation is scarce about how to properly account for the effect of the context in learning and evolving strategies. In this paper, a novel context-driven representation of the negotiation game is introduced. Also, a simple negotiation agent that queries available information from context variables, internally models them, and learns how to take advantage of this knowledge by playing against himself using reinforcement learning is proposed. Through a set of episodes of our context-aware agent against other negotiation agents inthe existing literature, it is shown that it makes no sense to negotiate without taking relevant context variables into account. Our context-aware negotiation agent has been implemented in the GENIUS tool. Results obtained are significant and quite revealing about the role of self-play in learning to negotiate
Fil: Kröhling, Dan Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
agent
automated negotition
Reinforcement Learning
Internet of Things, - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/108532
Ver los metadatos del registro completo
id |
CONICETDig_9bba504f3a3247fc351920785a0f48ac |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/108532 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The importance of context-dependent learning in negotiation agentsKröhling, Dan EzequielChiotti, Omar Juan AlfredoMartínez, Ernesto Carlosagentautomated negotitionReinforcement LearningInternet of Things,https://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Automated negotiation between artificial agents is essential to deploy Cognitive Computing and Internet of Things. In this sense, the behavior of those negotiation agents depend significantly on the influence of environmental variables, facts, and events, which made up the context of the negotiation game. This context affects not only a given agent preferences and strategies, but also those of his opponents. In spite of this, the existing literature on automated negotiation is scarce about how to properly account for the effect of the context in learning and evolving strategies. In this paper, a novel context-driven representation of the negotiation game is introduced. Also, a simple negotiation agent that queries available information from context variables, internally models them, and learns how to take advantage of this knowledge by playing against himself using reinforcement learning is proposed. Through a set of episodes of our context-aware agent against other negotiation agents inthe existing literature, it is shown that it makes no sense to negotiate without taking relevant context variables into account. Our context-aware negotiation agent has been implemented in the GENIUS tool. Results obtained are significant and quite revealing about the role of self-play in learning to negotiateFil: Kröhling, Dan Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaSociedad Iberoamericana de Inteligencia Artificial2019-05-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108532Kröhling, Dan Ezequiel; Chiotti, Omar Juan Alfredo; Martínez, Ernesto Carlos; The importance of context-dependent learning in negotiation agents; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 22; 63; 3-5-2019; 135-1491137-36011988-3064CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journal.iberamia.org/index.php/intartif/article/view/252info:eu-repo/semantics/altIdentifier/doi/10.4114/intartif.vol22iss63pp135-149info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:51Zoai:ri.conicet.gov.ar:11336/108532instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:52.156CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The importance of context-dependent learning in negotiation agents |
title |
The importance of context-dependent learning in negotiation agents |
spellingShingle |
The importance of context-dependent learning in negotiation agents Kröhling, Dan Ezequiel agent automated negotition Reinforcement Learning Internet of Things, |
title_short |
The importance of context-dependent learning in negotiation agents |
title_full |
The importance of context-dependent learning in negotiation agents |
title_fullStr |
The importance of context-dependent learning in negotiation agents |
title_full_unstemmed |
The importance of context-dependent learning in negotiation agents |
title_sort |
The importance of context-dependent learning in negotiation agents |
dc.creator.none.fl_str_mv |
Kröhling, Dan Ezequiel Chiotti, Omar Juan Alfredo Martínez, Ernesto Carlos |
author |
Kröhling, Dan Ezequiel |
author_facet |
Kröhling, Dan Ezequiel Chiotti, Omar Juan Alfredo Martínez, Ernesto Carlos |
author_role |
author |
author2 |
Chiotti, Omar Juan Alfredo Martínez, Ernesto Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
agent automated negotition Reinforcement Learning Internet of Things, |
topic |
agent automated negotition Reinforcement Learning Internet of Things, |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Automated negotiation between artificial agents is essential to deploy Cognitive Computing and Internet of Things. In this sense, the behavior of those negotiation agents depend significantly on the influence of environmental variables, facts, and events, which made up the context of the negotiation game. This context affects not only a given agent preferences and strategies, but also those of his opponents. In spite of this, the existing literature on automated negotiation is scarce about how to properly account for the effect of the context in learning and evolving strategies. In this paper, a novel context-driven representation of the negotiation game is introduced. Also, a simple negotiation agent that queries available information from context variables, internally models them, and learns how to take advantage of this knowledge by playing against himself using reinforcement learning is proposed. Through a set of episodes of our context-aware agent against other negotiation agents inthe existing literature, it is shown that it makes no sense to negotiate without taking relevant context variables into account. Our context-aware negotiation agent has been implemented in the GENIUS tool. Results obtained are significant and quite revealing about the role of self-play in learning to negotiate Fil: Kröhling, Dan Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
Automated negotiation between artificial agents is essential to deploy Cognitive Computing and Internet of Things. In this sense, the behavior of those negotiation agents depend significantly on the influence of environmental variables, facts, and events, which made up the context of the negotiation game. This context affects not only a given agent preferences and strategies, but also those of his opponents. In spite of this, the existing literature on automated negotiation is scarce about how to properly account for the effect of the context in learning and evolving strategies. In this paper, a novel context-driven representation of the negotiation game is introduced. Also, a simple negotiation agent that queries available information from context variables, internally models them, and learns how to take advantage of this knowledge by playing against himself using reinforcement learning is proposed. Through a set of episodes of our context-aware agent against other negotiation agents inthe existing literature, it is shown that it makes no sense to negotiate without taking relevant context variables into account. Our context-aware negotiation agent has been implemented in the GENIUS tool. Results obtained are significant and quite revealing about the role of self-play in learning to negotiate |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-05-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/108532 Kröhling, Dan Ezequiel; Chiotti, Omar Juan Alfredo; Martínez, Ernesto Carlos; The importance of context-dependent learning in negotiation agents; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 22; 63; 3-5-2019; 135-149 1137-3601 1988-3064 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/108532 |
identifier_str_mv |
Kröhling, Dan Ezequiel; Chiotti, Omar Juan Alfredo; Martínez, Ernesto Carlos; The importance of context-dependent learning in negotiation agents; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 22; 63; 3-5-2019; 135-149 1137-3601 1988-3064 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journal.iberamia.org/index.php/intartif/article/view/252 info:eu-repo/semantics/altIdentifier/doi/10.4114/intartif.vol22iss63pp135-149 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sociedad Iberoamericana de Inteligencia Artificial |
publisher.none.fl_str_mv |
Sociedad Iberoamericana de Inteligencia Artificial |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614060138561536 |
score |
13.069144 |