Learning and adaptation of strategies in automated negotiations between context-aware agents
- Autores
- Kröhling, Dan Ezequiel; Chiotti, Omar Juan Alfredo; Martínez, Ernesto Carlos
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work presents the hypothesis that guided the research efforts and a summary of the contributions of the doctoral thesis '`Aprendizaje y adaptación de estrategias para negociación automatizada entre agentes conscientes del contexto'. Succinctly, the thesis focuses on agents for automated bilateral negotiations that make use of the context as a key source of information to learn and adapt negotiation strategies in two levels of temporal abstraction. At the highest level, agents employ reinforcement learning to select strategies according to contextual circumstances. At the lowest level, agents use Gaussian Processes and artificial Theory of Mind to model their opponents and adapt their strategies. Agents are then tested in two Peer-to-Peer markets comprising an Eco-Industrial Park and a Smart Grid. The results highlight the significance for the automation of bilateral negotiations of incorporating the context as an informative source.
Fil: Kröhling, Dan Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Automated Negotiation
Multi-Agent Systems
Context-Awareness
Artificial Theory of Mind
Peer-to-Peer Markets - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/244558
Ver los metadatos del registro completo
id |
CONICETDig_d9d6b366b6bd06a610731d5aefe826e5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/244558 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Learning and adaptation of strategies in automated negotiations between context-aware agentsKröhling, Dan EzequielChiotti, Omar Juan AlfredoMartínez, Ernesto CarlosAutomated NegotiationMulti-Agent SystemsContext-AwarenessArtificial Theory of MindPeer-to-Peer Marketshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1This work presents the hypothesis that guided the research efforts and a summary of the contributions of the doctoral thesis '`Aprendizaje y adaptación de estrategias para negociación automatizada entre agentes conscientes del contexto'. Succinctly, the thesis focuses on agents for automated bilateral negotiations that make use of the context as a key source of information to learn and adapt negotiation strategies in two levels of temporal abstraction. At the highest level, agents employ reinforcement learning to select strategies according to contextual circumstances. At the lowest level, agents use Gaussian Processes and artificial Theory of Mind to model their opponents and adapt their strategies. Agents are then tested in two Peer-to-Peer markets comprising an Eco-Industrial Park and a Smart Grid. The results highlight the significance for the automation of bilateral negotiations of incorporating the context as an informative source.Fil: Kröhling, Dan Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaSociedad Iberoamericana de Inteligencia Artificial2024-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/244558Kröhling, Dan Ezequiel; Chiotti, Omar Juan Alfredo; Martínez, Ernesto Carlos; Learning and adaptation of strategies in automated negotiations between context-aware agents; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 27; 73; 2-2024; 159-1621988-3064CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journal.iberamia.org/index.php/intartif/article/view/1305info:eu-repo/semantics/altIdentifier/doi/10.4114/intartif.vol27iss73pp159-162info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:06:06Zoai:ri.conicet.gov.ar:11336/244558instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:06:06.93CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Learning and adaptation of strategies in automated negotiations between context-aware agents |
title |
Learning and adaptation of strategies in automated negotiations between context-aware agents |
spellingShingle |
Learning and adaptation of strategies in automated negotiations between context-aware agents Kröhling, Dan Ezequiel Automated Negotiation Multi-Agent Systems Context-Awareness Artificial Theory of Mind Peer-to-Peer Markets |
title_short |
Learning and adaptation of strategies in automated negotiations between context-aware agents |
title_full |
Learning and adaptation of strategies in automated negotiations between context-aware agents |
title_fullStr |
Learning and adaptation of strategies in automated negotiations between context-aware agents |
title_full_unstemmed |
Learning and adaptation of strategies in automated negotiations between context-aware agents |
title_sort |
Learning and adaptation of strategies in automated negotiations between context-aware agents |
dc.creator.none.fl_str_mv |
Kröhling, Dan Ezequiel Chiotti, Omar Juan Alfredo Martínez, Ernesto Carlos |
author |
Kröhling, Dan Ezequiel |
author_facet |
Kröhling, Dan Ezequiel Chiotti, Omar Juan Alfredo Martínez, Ernesto Carlos |
author_role |
author |
author2 |
Chiotti, Omar Juan Alfredo Martínez, Ernesto Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Automated Negotiation Multi-Agent Systems Context-Awareness Artificial Theory of Mind Peer-to-Peer Markets |
topic |
Automated Negotiation Multi-Agent Systems Context-Awareness Artificial Theory of Mind Peer-to-Peer Markets |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This work presents the hypothesis that guided the research efforts and a summary of the contributions of the doctoral thesis '`Aprendizaje y adaptación de estrategias para negociación automatizada entre agentes conscientes del contexto'. Succinctly, the thesis focuses on agents for automated bilateral negotiations that make use of the context as a key source of information to learn and adapt negotiation strategies in two levels of temporal abstraction. At the highest level, agents employ reinforcement learning to select strategies according to contextual circumstances. At the lowest level, agents use Gaussian Processes and artificial Theory of Mind to model their opponents and adapt their strategies. Agents are then tested in two Peer-to-Peer markets comprising an Eco-Industrial Park and a Smart Grid. The results highlight the significance for the automation of bilateral negotiations of incorporating the context as an informative source. Fil: Kröhling, Dan Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
This work presents the hypothesis that guided the research efforts and a summary of the contributions of the doctoral thesis '`Aprendizaje y adaptación de estrategias para negociación automatizada entre agentes conscientes del contexto'. Succinctly, the thesis focuses on agents for automated bilateral negotiations that make use of the context as a key source of information to learn and adapt negotiation strategies in two levels of temporal abstraction. At the highest level, agents employ reinforcement learning to select strategies according to contextual circumstances. At the lowest level, agents use Gaussian Processes and artificial Theory of Mind to model their opponents and adapt their strategies. Agents are then tested in two Peer-to-Peer markets comprising an Eco-Industrial Park and a Smart Grid. The results highlight the significance for the automation of bilateral negotiations of incorporating the context as an informative source. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/244558 Kröhling, Dan Ezequiel; Chiotti, Omar Juan Alfredo; Martínez, Ernesto Carlos; Learning and adaptation of strategies in automated negotiations between context-aware agents; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 27; 73; 2-2024; 159-162 1988-3064 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/244558 |
identifier_str_mv |
Kröhling, Dan Ezequiel; Chiotti, Omar Juan Alfredo; Martínez, Ernesto Carlos; Learning and adaptation of strategies in automated negotiations between context-aware agents; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 27; 73; 2-2024; 159-162 1988-3064 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journal.iberamia.org/index.php/intartif/article/view/1305 info:eu-repo/semantics/altIdentifier/doi/10.4114/intartif.vol27iss73pp159-162 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sociedad Iberoamericana de Inteligencia Artificial |
publisher.none.fl_str_mv |
Sociedad Iberoamericana de Inteligencia Artificial |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613905872060416 |
score |
13.069144 |