High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model

Autores
Pietarila Graham, J.; Mininni, Pablo Daniel; Pouquet, A.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
With the help of a model of magnetohydrodynamic (MHD) turbulence tested previously, we explore high Reynolds number regimes up to equivalent resolutions of 60003 grid points in the absence of forcing and with no imposed uniform magnetic field. For the given initial condition chosen here, with equal kinetic and magnetic energy, the flow ends up being dominated by the magnetic field, and the dynamics leads to an isotropic Iroshnikov-Kraichnan energy spectrum. However, the locally anisotropic magnetic field fluctuations perpendicular to the local mean field follow a Kolmogorov law. We find that the ratio of the eddy turnover time to the Alfvén time increases with wave number, contrary to the so-called critical balance hypothesis. Residual energy and helicity spectra are also considered; the role played by the conservation of magnetic helicity is studied, and scaling laws are found for the magnetic helicity and residual helicity spectra. We put these results in the context of the dynamics of a globally isotropic MHD flow that is locally anisotropic because of the influence of the strong large-scale magnetic field, leading to a partial equilibration between kinetic and magnetic modes for the energy and the helicity. © 2011 American Physical Society.
Fil: Pietarila Graham, J.. University Johns Hopkins; Estados Unidos
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Pouquet, A.. National Center for Atmospheric Research; Estados Unidos
Materia
Subgrid Models
Conducting Flows
Regularized Equations
Turbulence
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/57151

id CONICETDig_9b8b6095454d44d5fafd51012205d947
oai_identifier_str oai:ri.conicet.gov.ar:11336/57151
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling High Reynolds number magnetohydrodynamic turbulence using a Lagrangian modelPietarila Graham, J.Mininni, Pablo DanielPouquet, A.Subgrid ModelsConducting FlowsRegularized EquationsTurbulencehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1With the help of a model of magnetohydrodynamic (MHD) turbulence tested previously, we explore high Reynolds number regimes up to equivalent resolutions of 60003 grid points in the absence of forcing and with no imposed uniform magnetic field. For the given initial condition chosen here, with equal kinetic and magnetic energy, the flow ends up being dominated by the magnetic field, and the dynamics leads to an isotropic Iroshnikov-Kraichnan energy spectrum. However, the locally anisotropic magnetic field fluctuations perpendicular to the local mean field follow a Kolmogorov law. We find that the ratio of the eddy turnover time to the Alfvén time increases with wave number, contrary to the so-called critical balance hypothesis. Residual energy and helicity spectra are also considered; the role played by the conservation of magnetic helicity is studied, and scaling laws are found for the magnetic helicity and residual helicity spectra. We put these results in the context of the dynamics of a globally isotropic MHD flow that is locally anisotropic because of the influence of the strong large-scale magnetic field, leading to a partial equilibration between kinetic and magnetic modes for the energy and the helicity. © 2011 American Physical Society.Fil: Pietarila Graham, J.. University Johns Hopkins; Estados UnidosFil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Pouquet, A.. National Center for Atmospheric Research; Estados UnidosAmerican Physical Society2011-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57151Pietarila Graham, J.; Mininni, Pablo Daniel; Pouquet, A.; High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 84; 1; 7-2011; 163141-1631491539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pre.aps.org/abstract/PRE/v84/i1/e016314info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.84.016314info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:50Zoai:ri.conicet.gov.ar:11336/57151instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:50.458CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model
title High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model
spellingShingle High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model
Pietarila Graham, J.
Subgrid Models
Conducting Flows
Regularized Equations
Turbulence
title_short High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model
title_full High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model
title_fullStr High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model
title_full_unstemmed High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model
title_sort High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model
dc.creator.none.fl_str_mv Pietarila Graham, J.
Mininni, Pablo Daniel
Pouquet, A.
author Pietarila Graham, J.
author_facet Pietarila Graham, J.
Mininni, Pablo Daniel
Pouquet, A.
author_role author
author2 Mininni, Pablo Daniel
Pouquet, A.
author2_role author
author
dc.subject.none.fl_str_mv Subgrid Models
Conducting Flows
Regularized Equations
Turbulence
topic Subgrid Models
Conducting Flows
Regularized Equations
Turbulence
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv With the help of a model of magnetohydrodynamic (MHD) turbulence tested previously, we explore high Reynolds number regimes up to equivalent resolutions of 60003 grid points in the absence of forcing and with no imposed uniform magnetic field. For the given initial condition chosen here, with equal kinetic and magnetic energy, the flow ends up being dominated by the magnetic field, and the dynamics leads to an isotropic Iroshnikov-Kraichnan energy spectrum. However, the locally anisotropic magnetic field fluctuations perpendicular to the local mean field follow a Kolmogorov law. We find that the ratio of the eddy turnover time to the Alfvén time increases with wave number, contrary to the so-called critical balance hypothesis. Residual energy and helicity spectra are also considered; the role played by the conservation of magnetic helicity is studied, and scaling laws are found for the magnetic helicity and residual helicity spectra. We put these results in the context of the dynamics of a globally isotropic MHD flow that is locally anisotropic because of the influence of the strong large-scale magnetic field, leading to a partial equilibration between kinetic and magnetic modes for the energy and the helicity. © 2011 American Physical Society.
Fil: Pietarila Graham, J.. University Johns Hopkins; Estados Unidos
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Pouquet, A.. National Center for Atmospheric Research; Estados Unidos
description With the help of a model of magnetohydrodynamic (MHD) turbulence tested previously, we explore high Reynolds number regimes up to equivalent resolutions of 60003 grid points in the absence of forcing and with no imposed uniform magnetic field. For the given initial condition chosen here, with equal kinetic and magnetic energy, the flow ends up being dominated by the magnetic field, and the dynamics leads to an isotropic Iroshnikov-Kraichnan energy spectrum. However, the locally anisotropic magnetic field fluctuations perpendicular to the local mean field follow a Kolmogorov law. We find that the ratio of the eddy turnover time to the Alfvén time increases with wave number, contrary to the so-called critical balance hypothesis. Residual energy and helicity spectra are also considered; the role played by the conservation of magnetic helicity is studied, and scaling laws are found for the magnetic helicity and residual helicity spectra. We put these results in the context of the dynamics of a globally isotropic MHD flow that is locally anisotropic because of the influence of the strong large-scale magnetic field, leading to a partial equilibration between kinetic and magnetic modes for the energy and the helicity. © 2011 American Physical Society.
publishDate 2011
dc.date.none.fl_str_mv 2011-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/57151
Pietarila Graham, J.; Mininni, Pablo Daniel; Pouquet, A.; High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 84; 1; 7-2011; 163141-163149
1539-3755
CONICET Digital
CONICET
url http://hdl.handle.net/11336/57151
identifier_str_mv Pietarila Graham, J.; Mininni, Pablo Daniel; Pouquet, A.; High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 84; 1; 7-2011; 163141-163149
1539-3755
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pre.aps.org/abstract/PRE/v84/i1/e016314
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.84.016314
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614060036849664
score 13.070432