Markov property of Lagrangian turbulence
- Autores
- Fuchs, A.; Obligado, M.; Bourgoin, M.; Gibert, M.; Mininni, Pablo Daniel; Peinke, J.
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Based on direct numerical simulations with point-like inertial particles, with Stokes numbers St = 0, 0.5, 3, and 6, transported by homogeneous and isotropic turbulent flows, we present in this letter for the first time evidence for the existence of Markov property in Lagrangian turbulence. We show that the Markov property is valid for a finite step size larger than a Stokes-number-dependent Einstein-Markov coherence time scale. This enables the description of multi-scale statistics of Lagrangian particles by Fokker-Planck equations, which can be embedded in an interdisciplinary approach linking the statistical description of turbulence with fluctuation theorems of non-equilibrium stochastic thermodynamics and local flow structures. The formalism allows estimation of the stochastic thermodynamics entropy exchange associated with the particles Lagrangian trajectories. Entropy-consuming trajectories of the particles are related to specific evolution of velocity increments through scales and may be seen as intermittent structures. Statistical features of Lagrangian paths and entropy values are thus fixed by the fluctuation theorems.
Fil: Fuchs, A.. Universität Oldenburg; Alemania
Fil: Obligado, M.. Universite Grenoble Alpes; Francia
Fil: Bourgoin, M.. École Normale Supérieure de Lyon; Francia
Fil: Gibert, M.. Universite Grenoble Alpes; Francia
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Peinke, J.. Universität Oldenburg; Alemania - Materia
-
TURBULENCE
PARTICLE LADEN FLOWS
STOCHASTIC PROCESSES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/215378
Ver los metadatos del registro completo
id |
CONICETDig_330799353cecb2fec7f0294128b360ff |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/215378 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Markov property of Lagrangian turbulenceFuchs, A.Obligado, M.Bourgoin, M.Gibert, M.Mininni, Pablo DanielPeinke, J.TURBULENCEPARTICLE LADEN FLOWSSTOCHASTIC PROCESSEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Based on direct numerical simulations with point-like inertial particles, with Stokes numbers St = 0, 0.5, 3, and 6, transported by homogeneous and isotropic turbulent flows, we present in this letter for the first time evidence for the existence of Markov property in Lagrangian turbulence. We show that the Markov property is valid for a finite step size larger than a Stokes-number-dependent Einstein-Markov coherence time scale. This enables the description of multi-scale statistics of Lagrangian particles by Fokker-Planck equations, which can be embedded in an interdisciplinary approach linking the statistical description of turbulence with fluctuation theorems of non-equilibrium stochastic thermodynamics and local flow structures. The formalism allows estimation of the stochastic thermodynamics entropy exchange associated with the particles Lagrangian trajectories. Entropy-consuming trajectories of the particles are related to specific evolution of velocity increments through scales and may be seen as intermittent structures. Statistical features of Lagrangian paths and entropy values are thus fixed by the fluctuation theorems.Fil: Fuchs, A.. Universität Oldenburg; AlemaniaFil: Obligado, M.. Universite Grenoble Alpes; FranciaFil: Bourgoin, M.. École Normale Supérieure de Lyon; FranciaFil: Gibert, M.. Universite Grenoble Alpes; FranciaFil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Peinke, J.. Universität Oldenburg; AlemaniaIOP Publishing2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215378Fuchs, A.; Obligado, M.; Bourgoin, M.; Gibert, M.; Mininni, Pablo Daniel; et al.; Markov property of Lagrangian turbulence; IOP Publishing; Europhysics Letters; 137; 5; 3-2022; 1-70295-5075CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1209/0295-5075/ac55f1info:eu-repo/semantics/altIdentifier/doi/10.1209/0295-5075/ac55f1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:19Zoai:ri.conicet.gov.ar:11336/215378instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:19.93CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Markov property of Lagrangian turbulence |
title |
Markov property of Lagrangian turbulence |
spellingShingle |
Markov property of Lagrangian turbulence Fuchs, A. TURBULENCE PARTICLE LADEN FLOWS STOCHASTIC PROCESSES |
title_short |
Markov property of Lagrangian turbulence |
title_full |
Markov property of Lagrangian turbulence |
title_fullStr |
Markov property of Lagrangian turbulence |
title_full_unstemmed |
Markov property of Lagrangian turbulence |
title_sort |
Markov property of Lagrangian turbulence |
dc.creator.none.fl_str_mv |
Fuchs, A. Obligado, M. Bourgoin, M. Gibert, M. Mininni, Pablo Daniel Peinke, J. |
author |
Fuchs, A. |
author_facet |
Fuchs, A. Obligado, M. Bourgoin, M. Gibert, M. Mininni, Pablo Daniel Peinke, J. |
author_role |
author |
author2 |
Obligado, M. Bourgoin, M. Gibert, M. Mininni, Pablo Daniel Peinke, J. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
TURBULENCE PARTICLE LADEN FLOWS STOCHASTIC PROCESSES |
topic |
TURBULENCE PARTICLE LADEN FLOWS STOCHASTIC PROCESSES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Based on direct numerical simulations with point-like inertial particles, with Stokes numbers St = 0, 0.5, 3, and 6, transported by homogeneous and isotropic turbulent flows, we present in this letter for the first time evidence for the existence of Markov property in Lagrangian turbulence. We show that the Markov property is valid for a finite step size larger than a Stokes-number-dependent Einstein-Markov coherence time scale. This enables the description of multi-scale statistics of Lagrangian particles by Fokker-Planck equations, which can be embedded in an interdisciplinary approach linking the statistical description of turbulence with fluctuation theorems of non-equilibrium stochastic thermodynamics and local flow structures. The formalism allows estimation of the stochastic thermodynamics entropy exchange associated with the particles Lagrangian trajectories. Entropy-consuming trajectories of the particles are related to specific evolution of velocity increments through scales and may be seen as intermittent structures. Statistical features of Lagrangian paths and entropy values are thus fixed by the fluctuation theorems. Fil: Fuchs, A.. Universität Oldenburg; Alemania Fil: Obligado, M.. Universite Grenoble Alpes; Francia Fil: Bourgoin, M.. École Normale Supérieure de Lyon; Francia Fil: Gibert, M.. Universite Grenoble Alpes; Francia Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Peinke, J.. Universität Oldenburg; Alemania |
description |
Based on direct numerical simulations with point-like inertial particles, with Stokes numbers St = 0, 0.5, 3, and 6, transported by homogeneous and isotropic turbulent flows, we present in this letter for the first time evidence for the existence of Markov property in Lagrangian turbulence. We show that the Markov property is valid for a finite step size larger than a Stokes-number-dependent Einstein-Markov coherence time scale. This enables the description of multi-scale statistics of Lagrangian particles by Fokker-Planck equations, which can be embedded in an interdisciplinary approach linking the statistical description of turbulence with fluctuation theorems of non-equilibrium stochastic thermodynamics and local flow structures. The formalism allows estimation of the stochastic thermodynamics entropy exchange associated with the particles Lagrangian trajectories. Entropy-consuming trajectories of the particles are related to specific evolution of velocity increments through scales and may be seen as intermittent structures. Statistical features of Lagrangian paths and entropy values are thus fixed by the fluctuation theorems. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/215378 Fuchs, A.; Obligado, M.; Bourgoin, M.; Gibert, M.; Mininni, Pablo Daniel; et al.; Markov property of Lagrangian turbulence; IOP Publishing; Europhysics Letters; 137; 5; 3-2022; 1-7 0295-5075 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/215378 |
identifier_str_mv |
Fuchs, A.; Obligado, M.; Bourgoin, M.; Gibert, M.; Mininni, Pablo Daniel; et al.; Markov property of Lagrangian turbulence; IOP Publishing; Europhysics Letters; 137; 5; 3-2022; 1-7 0295-5075 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1209/0295-5075/ac55f1 info:eu-repo/semantics/altIdentifier/doi/10.1209/0295-5075/ac55f1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270114505818112 |
score |
13.13397 |