Markov property of Lagrangian turbulence

Autores
Fuchs, A.; Obligado, M.; Bourgoin, M.; Gibert, M.; Mininni, Pablo Daniel; Peinke, J.
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Based on direct numerical simulations with point-like inertial particles, with Stokes numbers St = 0, 0.5, 3, and 6, transported by homogeneous and isotropic turbulent flows, we present in this letter for the first time evidence for the existence of Markov property in Lagrangian turbulence. We show that the Markov property is valid for a finite step size larger than a Stokes-number-dependent Einstein-Markov coherence time scale. This enables the description of multi-scale statistics of Lagrangian particles by Fokker-Planck equations, which can be embedded in an interdisciplinary approach linking the statistical description of turbulence with fluctuation theorems of non-equilibrium stochastic thermodynamics and local flow structures. The formalism allows estimation of the stochastic thermodynamics entropy exchange associated with the particles Lagrangian trajectories. Entropy-consuming trajectories of the particles are related to specific evolution of velocity increments through scales and may be seen as intermittent structures. Statistical features of Lagrangian paths and entropy values are thus fixed by the fluctuation theorems.
Fil: Fuchs, A.. Universität Oldenburg; Alemania
Fil: Obligado, M.. Universite Grenoble Alpes; Francia
Fil: Bourgoin, M.. École Normale Supérieure de Lyon; Francia
Fil: Gibert, M.. Universite Grenoble Alpes; Francia
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Peinke, J.. Universität Oldenburg; Alemania
Materia
TURBULENCE
PARTICLE LADEN FLOWS
STOCHASTIC PROCESSES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/215378

id CONICETDig_330799353cecb2fec7f0294128b360ff
oai_identifier_str oai:ri.conicet.gov.ar:11336/215378
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Markov property of Lagrangian turbulenceFuchs, A.Obligado, M.Bourgoin, M.Gibert, M.Mininni, Pablo DanielPeinke, J.TURBULENCEPARTICLE LADEN FLOWSSTOCHASTIC PROCESSEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Based on direct numerical simulations with point-like inertial particles, with Stokes numbers St = 0, 0.5, 3, and 6, transported by homogeneous and isotropic turbulent flows, we present in this letter for the first time evidence for the existence of Markov property in Lagrangian turbulence. We show that the Markov property is valid for a finite step size larger than a Stokes-number-dependent Einstein-Markov coherence time scale. This enables the description of multi-scale statistics of Lagrangian particles by Fokker-Planck equations, which can be embedded in an interdisciplinary approach linking the statistical description of turbulence with fluctuation theorems of non-equilibrium stochastic thermodynamics and local flow structures. The formalism allows estimation of the stochastic thermodynamics entropy exchange associated with the particles Lagrangian trajectories. Entropy-consuming trajectories of the particles are related to specific evolution of velocity increments through scales and may be seen as intermittent structures. Statistical features of Lagrangian paths and entropy values are thus fixed by the fluctuation theorems.Fil: Fuchs, A.. Universität Oldenburg; AlemaniaFil: Obligado, M.. Universite Grenoble Alpes; FranciaFil: Bourgoin, M.. École Normale Supérieure de Lyon; FranciaFil: Gibert, M.. Universite Grenoble Alpes; FranciaFil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Peinke, J.. Universität Oldenburg; AlemaniaIOP Publishing2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215378Fuchs, A.; Obligado, M.; Bourgoin, M.; Gibert, M.; Mininni, Pablo Daniel; et al.; Markov property of Lagrangian turbulence; IOP Publishing; Europhysics Letters; 137; 5; 3-2022; 1-70295-5075CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1209/0295-5075/ac55f1info:eu-repo/semantics/altIdentifier/doi/10.1209/0295-5075/ac55f1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:19Zoai:ri.conicet.gov.ar:11336/215378instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:19.93CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Markov property of Lagrangian turbulence
title Markov property of Lagrangian turbulence
spellingShingle Markov property of Lagrangian turbulence
Fuchs, A.
TURBULENCE
PARTICLE LADEN FLOWS
STOCHASTIC PROCESSES
title_short Markov property of Lagrangian turbulence
title_full Markov property of Lagrangian turbulence
title_fullStr Markov property of Lagrangian turbulence
title_full_unstemmed Markov property of Lagrangian turbulence
title_sort Markov property of Lagrangian turbulence
dc.creator.none.fl_str_mv Fuchs, A.
Obligado, M.
Bourgoin, M.
Gibert, M.
Mininni, Pablo Daniel
Peinke, J.
author Fuchs, A.
author_facet Fuchs, A.
Obligado, M.
Bourgoin, M.
Gibert, M.
Mininni, Pablo Daniel
Peinke, J.
author_role author
author2 Obligado, M.
Bourgoin, M.
Gibert, M.
Mininni, Pablo Daniel
Peinke, J.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv TURBULENCE
PARTICLE LADEN FLOWS
STOCHASTIC PROCESSES
topic TURBULENCE
PARTICLE LADEN FLOWS
STOCHASTIC PROCESSES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Based on direct numerical simulations with point-like inertial particles, with Stokes numbers St = 0, 0.5, 3, and 6, transported by homogeneous and isotropic turbulent flows, we present in this letter for the first time evidence for the existence of Markov property in Lagrangian turbulence. We show that the Markov property is valid for a finite step size larger than a Stokes-number-dependent Einstein-Markov coherence time scale. This enables the description of multi-scale statistics of Lagrangian particles by Fokker-Planck equations, which can be embedded in an interdisciplinary approach linking the statistical description of turbulence with fluctuation theorems of non-equilibrium stochastic thermodynamics and local flow structures. The formalism allows estimation of the stochastic thermodynamics entropy exchange associated with the particles Lagrangian trajectories. Entropy-consuming trajectories of the particles are related to specific evolution of velocity increments through scales and may be seen as intermittent structures. Statistical features of Lagrangian paths and entropy values are thus fixed by the fluctuation theorems.
Fil: Fuchs, A.. Universität Oldenburg; Alemania
Fil: Obligado, M.. Universite Grenoble Alpes; Francia
Fil: Bourgoin, M.. École Normale Supérieure de Lyon; Francia
Fil: Gibert, M.. Universite Grenoble Alpes; Francia
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Peinke, J.. Universität Oldenburg; Alemania
description Based on direct numerical simulations with point-like inertial particles, with Stokes numbers St = 0, 0.5, 3, and 6, transported by homogeneous and isotropic turbulent flows, we present in this letter for the first time evidence for the existence of Markov property in Lagrangian turbulence. We show that the Markov property is valid for a finite step size larger than a Stokes-number-dependent Einstein-Markov coherence time scale. This enables the description of multi-scale statistics of Lagrangian particles by Fokker-Planck equations, which can be embedded in an interdisciplinary approach linking the statistical description of turbulence with fluctuation theorems of non-equilibrium stochastic thermodynamics and local flow structures. The formalism allows estimation of the stochastic thermodynamics entropy exchange associated with the particles Lagrangian trajectories. Entropy-consuming trajectories of the particles are related to specific evolution of velocity increments through scales and may be seen as intermittent structures. Statistical features of Lagrangian paths and entropy values are thus fixed by the fluctuation theorems.
publishDate 2022
dc.date.none.fl_str_mv 2022-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/215378
Fuchs, A.; Obligado, M.; Bourgoin, M.; Gibert, M.; Mininni, Pablo Daniel; et al.; Markov property of Lagrangian turbulence; IOP Publishing; Europhysics Letters; 137; 5; 3-2022; 1-7
0295-5075
CONICET Digital
CONICET
url http://hdl.handle.net/11336/215378
identifier_str_mv Fuchs, A.; Obligado, M.; Bourgoin, M.; Gibert, M.; Mininni, Pablo Daniel; et al.; Markov property of Lagrangian turbulence; IOP Publishing; Europhysics Letters; 137; 5; 3-2022; 1-7
0295-5075
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1209/0295-5075/ac55f1
info:eu-repo/semantics/altIdentifier/doi/10.1209/0295-5075/ac55f1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270114505818112
score 13.13397