Analysis of mechanical properties and its associated fracture surfaces in dual-phase austempered ductile iron

Autores
Basso, Alejandro Daniel; Martinez, Ricardo Antonio; Sikora, Jorge Antonio
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work aims at evaluating the fracture surfaces of tensile samples taken from a new kind of ductile iron referred to as ‘dual-phase Austempered Ductile Iron (ADI)’, a material composed of ausferrite (regular ADI microstructure) and free (or allotriomorphic) ferrite. The tensile fracture surface characteristics and tensile properties of eight dual-phase ADI microstructures, containing different relative quantities of ferrite and ausferrite, were studied in an alloyed ductile cast iron. Additionally, samples with fully ferritic and fully ausferritic (ADI) matrices were produced to be used as reference. Ferritic–pearlitic ductile irons (DI) were evaluated as well. For dual-phase ADI microstructures, when the amount of ausferrite increases, tensile strength, yield stress and hardness do so too. Interesting combinations of strength and elongation until failure were found. The mechanisms of fracture that characterise DI under static uniaxial loading at room temperature are nucleation, growth and coalescence of microvoids. The fracture surface of fully ferritic DI exhibited an irregular topography with dimples and large deformation of the nodular cavities, characteristic of ductile fracture. Microstructures with small percentages of ausferrite (less than 20%) yielded better mechanical properties in relation to fully ferritic matrices. These microstructures presented regions of quasi-cleavage fracture around last-to-freeze zones, related to the presence of ausferrite in those areas. As the amount of ausferrite increased, a decrease in nodular cavities deformation and a flatter fracture surface topography were noticed, which were ascribed to a higher amount of quasi-cleavage zones. By means of a special thermal cycle, microstructures with pearlitic matrices containing a continuous and well-defined net of allotriomorphic ferrite, located at the grain boundaries of recrystallised austenite, were obtained. The results of the mechanical tests leading to these microstructures revealed a significant enhancement of mechanical properties with respect to completely pearlitic matrices. The topographies of the fracture surfaces revealed a flat aspect and slightly or undeformed nodular cavities, as a result of high amount of pearlite. Still isolated dimple patterns associated to ferritic regions were observed.
Fil: Basso, Alejandro Daniel. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina
Fil: Martinez, Ricardo Antonio. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina
Fil: Sikora, Jorge Antonio. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina
Materia
Dual-Phase Adi
Ductile Iron
Fracture Surfaces
Microstructure
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/2758

id CONICETDig_a0cd311eaf9f9306125aeb4bbc61df3b
oai_identifier_str oai:ri.conicet.gov.ar:11336/2758
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Analysis of mechanical properties and its associated fracture surfaces in dual-phase austempered ductile ironBasso, Alejandro DanielMartinez, Ricardo AntonioSikora, Jorge AntonioDual-Phase AdiDuctile IronFracture SurfacesMicrostructurehttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2This work aims at evaluating the fracture surfaces of tensile samples taken from a new kind of ductile iron referred to as ‘dual-phase Austempered Ductile Iron (ADI)’, a material composed of ausferrite (regular ADI microstructure) and free (or allotriomorphic) ferrite. The tensile fracture surface characteristics and tensile properties of eight dual-phase ADI microstructures, containing different relative quantities of ferrite and ausferrite, were studied in an alloyed ductile cast iron. Additionally, samples with fully ferritic and fully ausferritic (ADI) matrices were produced to be used as reference. Ferritic–pearlitic ductile irons (DI) were evaluated as well. For dual-phase ADI microstructures, when the amount of ausferrite increases, tensile strength, yield stress and hardness do so too. Interesting combinations of strength and elongation until failure were found. The mechanisms of fracture that characterise DI under static uniaxial loading at room temperature are nucleation, growth and coalescence of microvoids. The fracture surface of fully ferritic DI exhibited an irregular topography with dimples and large deformation of the nodular cavities, characteristic of ductile fracture. Microstructures with small percentages of ausferrite (less than 20%) yielded better mechanical properties in relation to fully ferritic matrices. These microstructures presented regions of quasi-cleavage fracture around last-to-freeze zones, related to the presence of ausferrite in those areas. As the amount of ausferrite increased, a decrease in nodular cavities deformation and a flatter fracture surface topography were noticed, which were ascribed to a higher amount of quasi-cleavage zones. By means of a special thermal cycle, microstructures with pearlitic matrices containing a continuous and well-defined net of allotriomorphic ferrite, located at the grain boundaries of recrystallised austenite, were obtained. The results of the mechanical tests leading to these microstructures revealed a significant enhancement of mechanical properties with respect to completely pearlitic matrices. The topographies of the fracture surfaces revealed a flat aspect and slightly or undeformed nodular cavities, as a result of high amount of pearlite. Still isolated dimple patterns associated to ferritic regions were observed.Fil: Basso, Alejandro Daniel. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); ArgentinaFil: Martinez, Ricardo Antonio. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); ArgentinaFil: Sikora, Jorge Antonio. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); ArgentinaWiley Blackwell Publishing, Inc2013-04-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2758Basso, Alejandro Daniel; Martinez, Ricardo Antonio; Sikora, Jorge Antonio; Analysis of mechanical properties and its associated fracture surfaces in dual-phase austempered ductile iron; Wiley Blackwell Publishing, Inc; Fatigue & Fracture Of Engineering Materials & Structures (print); 36; 7; 11-4-2013; 650-6598756-758Xenginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1111/ffe.12032info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/ffe.12032/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:57Zoai:ri.conicet.gov.ar:11336/2758instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:58.126CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Analysis of mechanical properties and its associated fracture surfaces in dual-phase austempered ductile iron
title Analysis of mechanical properties and its associated fracture surfaces in dual-phase austempered ductile iron
spellingShingle Analysis of mechanical properties and its associated fracture surfaces in dual-phase austempered ductile iron
Basso, Alejandro Daniel
Dual-Phase Adi
Ductile Iron
Fracture Surfaces
Microstructure
title_short Analysis of mechanical properties and its associated fracture surfaces in dual-phase austempered ductile iron
title_full Analysis of mechanical properties and its associated fracture surfaces in dual-phase austempered ductile iron
title_fullStr Analysis of mechanical properties and its associated fracture surfaces in dual-phase austempered ductile iron
title_full_unstemmed Analysis of mechanical properties and its associated fracture surfaces in dual-phase austempered ductile iron
title_sort Analysis of mechanical properties and its associated fracture surfaces in dual-phase austempered ductile iron
dc.creator.none.fl_str_mv Basso, Alejandro Daniel
Martinez, Ricardo Antonio
Sikora, Jorge Antonio
author Basso, Alejandro Daniel
author_facet Basso, Alejandro Daniel
Martinez, Ricardo Antonio
Sikora, Jorge Antonio
author_role author
author2 Martinez, Ricardo Antonio
Sikora, Jorge Antonio
author2_role author
author
dc.subject.none.fl_str_mv Dual-Phase Adi
Ductile Iron
Fracture Surfaces
Microstructure
topic Dual-Phase Adi
Ductile Iron
Fracture Surfaces
Microstructure
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This work aims at evaluating the fracture surfaces of tensile samples taken from a new kind of ductile iron referred to as ‘dual-phase Austempered Ductile Iron (ADI)’, a material composed of ausferrite (regular ADI microstructure) and free (or allotriomorphic) ferrite. The tensile fracture surface characteristics and tensile properties of eight dual-phase ADI microstructures, containing different relative quantities of ferrite and ausferrite, were studied in an alloyed ductile cast iron. Additionally, samples with fully ferritic and fully ausferritic (ADI) matrices were produced to be used as reference. Ferritic–pearlitic ductile irons (DI) were evaluated as well. For dual-phase ADI microstructures, when the amount of ausferrite increases, tensile strength, yield stress and hardness do so too. Interesting combinations of strength and elongation until failure were found. The mechanisms of fracture that characterise DI under static uniaxial loading at room temperature are nucleation, growth and coalescence of microvoids. The fracture surface of fully ferritic DI exhibited an irregular topography with dimples and large deformation of the nodular cavities, characteristic of ductile fracture. Microstructures with small percentages of ausferrite (less than 20%) yielded better mechanical properties in relation to fully ferritic matrices. These microstructures presented regions of quasi-cleavage fracture around last-to-freeze zones, related to the presence of ausferrite in those areas. As the amount of ausferrite increased, a decrease in nodular cavities deformation and a flatter fracture surface topography were noticed, which were ascribed to a higher amount of quasi-cleavage zones. By means of a special thermal cycle, microstructures with pearlitic matrices containing a continuous and well-defined net of allotriomorphic ferrite, located at the grain boundaries of recrystallised austenite, were obtained. The results of the mechanical tests leading to these microstructures revealed a significant enhancement of mechanical properties with respect to completely pearlitic matrices. The topographies of the fracture surfaces revealed a flat aspect and slightly or undeformed nodular cavities, as a result of high amount of pearlite. Still isolated dimple patterns associated to ferritic regions were observed.
Fil: Basso, Alejandro Daniel. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina
Fil: Martinez, Ricardo Antonio. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina
Fil: Sikora, Jorge Antonio. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina
description This work aims at evaluating the fracture surfaces of tensile samples taken from a new kind of ductile iron referred to as ‘dual-phase Austempered Ductile Iron (ADI)’, a material composed of ausferrite (regular ADI microstructure) and free (or allotriomorphic) ferrite. The tensile fracture surface characteristics and tensile properties of eight dual-phase ADI microstructures, containing different relative quantities of ferrite and ausferrite, were studied in an alloyed ductile cast iron. Additionally, samples with fully ferritic and fully ausferritic (ADI) matrices were produced to be used as reference. Ferritic–pearlitic ductile irons (DI) were evaluated as well. For dual-phase ADI microstructures, when the amount of ausferrite increases, tensile strength, yield stress and hardness do so too. Interesting combinations of strength and elongation until failure were found. The mechanisms of fracture that characterise DI under static uniaxial loading at room temperature are nucleation, growth and coalescence of microvoids. The fracture surface of fully ferritic DI exhibited an irregular topography with dimples and large deformation of the nodular cavities, characteristic of ductile fracture. Microstructures with small percentages of ausferrite (less than 20%) yielded better mechanical properties in relation to fully ferritic matrices. These microstructures presented regions of quasi-cleavage fracture around last-to-freeze zones, related to the presence of ausferrite in those areas. As the amount of ausferrite increased, a decrease in nodular cavities deformation and a flatter fracture surface topography were noticed, which were ascribed to a higher amount of quasi-cleavage zones. By means of a special thermal cycle, microstructures with pearlitic matrices containing a continuous and well-defined net of allotriomorphic ferrite, located at the grain boundaries of recrystallised austenite, were obtained. The results of the mechanical tests leading to these microstructures revealed a significant enhancement of mechanical properties with respect to completely pearlitic matrices. The topographies of the fracture surfaces revealed a flat aspect and slightly or undeformed nodular cavities, as a result of high amount of pearlite. Still isolated dimple patterns associated to ferritic regions were observed.
publishDate 2013
dc.date.none.fl_str_mv 2013-04-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/2758
Basso, Alejandro Daniel; Martinez, Ricardo Antonio; Sikora, Jorge Antonio; Analysis of mechanical properties and its associated fracture surfaces in dual-phase austempered ductile iron; Wiley Blackwell Publishing, Inc; Fatigue & Fracture Of Engineering Materials & Structures (print); 36; 7; 11-4-2013; 650-659
8756-758X
url http://hdl.handle.net/11336/2758
identifier_str_mv Basso, Alejandro Daniel; Martinez, Ricardo Antonio; Sikora, Jorge Antonio; Analysis of mechanical properties and its associated fracture surfaces in dual-phase austempered ductile iron; Wiley Blackwell Publishing, Inc; Fatigue & Fracture Of Engineering Materials & Structures (print); 36; 7; 11-4-2013; 650-659
8756-758X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1111/ffe.12032
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/ffe.12032/abstract
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270139388526592
score 13.13397