Scaling rules in optomechanical semiconductor micropillars
- Autores
- Anguiano, Sebastian; Sesin, Pablo Ezequiel; Bruchhausen, Axel Emerico; Lamberti, F. R.; Favero, I.; Esmann, M.; Sagnes, I.; Lemaître, A.; Lanzillotti Kimura, Norberto Daniel; Senellart, P.; Fainstein, Alejandro
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Semiconductor pillar microcavities have recently emerged as a promising optomechanical platform in the unprecedented 20-GHz frequency range. Currently established models for the mechanical behavior of micropillars, however, rely on complete numerical simulations or semianalytical approaches, which makes their application to experiments notoriously difficult. Here we overcome this challenge with an effective model by reducing the full, hybridized mechanical mode picture of a micropillar to an approach that captures the observed global trends. We show experimentally the validity of this approach by studying the lateral size dependence of the frequency, amplitude, and lifetime of the mechanical modes of square-section pillar microcavities, using room-temperature pump-probe microscopy. General scaling rules for these quantities are found and explained through simple phenomenological models of the physical phenomena involved. We show that the energy shift Δωm of the modes due to confinement is dependent on the inverse of their frequency ω0 and lateral size L (Δωm1/ω0L2) and that the mode lifetime τ is linear with pillar size and inversely proportional to their frequency (τ L/ω0). The mode amplitude is in turn inversely proportional to the lateral size of the considered resonators. This is related to the dependence of the optomechanical coupling rate (g01/L) with the spatial extent of the confined electromagnetic and mechanical fields. Using a numerical model based on the finite-element method, we determine the magnitude and size dependence of g0 and, by combining the results with the experimental data, we discuss the attainable single-photon cooperativity in these systems. The effective models proposed and the scaling rules found constitute an important tool in micropillar optomechanics and in the future development of more complex micropillar based devices.
Fil: Anguiano, Sebastian. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Sesin, Pablo Ezequiel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Bruchhausen, Axel Emerico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Lamberti, F. R.. Centre National de la Recherche Scientifique; Francia
Fil: Favero, I.. Centre National de la Recherche Scientifique; Francia
Fil: Esmann, M.. Centre National de la Recherche Scientifique; Francia
Fil: Sagnes, I.. Centre National de la Recherche Scientifique; Francia
Fil: Lemaître, A.. Centre National de la Recherche Scientifique; Francia
Fil: Lanzillotti Kimura, Norberto Daniel. Centre National de la Recherche Scientifique; Francia
Fil: Senellart, P.. Centre National de la Recherche Scientifique; Francia
Fil: Fainstein, Alejandro. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina - Materia
-
optomecanica
fonones acusticos
resonadores
micropilares - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/182525
Ver los metadatos del registro completo
id |
CONICETDig_99e98101dac6e2c18475e6966e16195a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/182525 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Scaling rules in optomechanical semiconductor micropillarsAnguiano, SebastianSesin, Pablo EzequielBruchhausen, Axel EmericoLamberti, F. R.Favero, I.Esmann, M.Sagnes, I.Lemaître, A.Lanzillotti Kimura, Norberto DanielSenellart, P.Fainstein, Alejandrooptomecanicafonones acusticosresonadoresmicropilareshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Semiconductor pillar microcavities have recently emerged as a promising optomechanical platform in the unprecedented 20-GHz frequency range. Currently established models for the mechanical behavior of micropillars, however, rely on complete numerical simulations or semianalytical approaches, which makes their application to experiments notoriously difficult. Here we overcome this challenge with an effective model by reducing the full, hybridized mechanical mode picture of a micropillar to an approach that captures the observed global trends. We show experimentally the validity of this approach by studying the lateral size dependence of the frequency, amplitude, and lifetime of the mechanical modes of square-section pillar microcavities, using room-temperature pump-probe microscopy. General scaling rules for these quantities are found and explained through simple phenomenological models of the physical phenomena involved. We show that the energy shift Δωm of the modes due to confinement is dependent on the inverse of their frequency ω0 and lateral size L (Δωm1/ω0L2) and that the mode lifetime τ is linear with pillar size and inversely proportional to their frequency (τ L/ω0). The mode amplitude is in turn inversely proportional to the lateral size of the considered resonators. This is related to the dependence of the optomechanical coupling rate (g01/L) with the spatial extent of the confined electromagnetic and mechanical fields. Using a numerical model based on the finite-element method, we determine the magnitude and size dependence of g0 and, by combining the results with the experimental data, we discuss the attainable single-photon cooperativity in these systems. The effective models proposed and the scaling rules found constitute an important tool in micropillar optomechanics and in the future development of more complex micropillar based devices.Fil: Anguiano, Sebastian. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Sesin, Pablo Ezequiel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Bruchhausen, Axel Emerico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Lamberti, F. R.. Centre National de la Recherche Scientifique; FranciaFil: Favero, I.. Centre National de la Recherche Scientifique; FranciaFil: Esmann, M.. Centre National de la Recherche Scientifique; FranciaFil: Sagnes, I.. Centre National de la Recherche Scientifique; FranciaFil: Lemaître, A.. Centre National de la Recherche Scientifique; FranciaFil: Lanzillotti Kimura, Norberto Daniel. Centre National de la Recherche Scientifique; FranciaFil: Senellart, P.. Centre National de la Recherche Scientifique; FranciaFil: Fainstein, Alejandro. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaAmerican Physical Society2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182525Anguiano, Sebastian; Sesin, Pablo Ezequiel; Bruchhausen, Axel Emerico; Lamberti, F. R.; Favero, I.; et al.; Scaling rules in optomechanical semiconductor micropillars; American Physical Society; Physical Review A; 98; 6; 12-2018; 1-82469-99262469-9934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevA.98.063810info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.98.063810info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:20Zoai:ri.conicet.gov.ar:11336/182525instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:21.099CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Scaling rules in optomechanical semiconductor micropillars |
title |
Scaling rules in optomechanical semiconductor micropillars |
spellingShingle |
Scaling rules in optomechanical semiconductor micropillars Anguiano, Sebastian optomecanica fonones acusticos resonadores micropilares |
title_short |
Scaling rules in optomechanical semiconductor micropillars |
title_full |
Scaling rules in optomechanical semiconductor micropillars |
title_fullStr |
Scaling rules in optomechanical semiconductor micropillars |
title_full_unstemmed |
Scaling rules in optomechanical semiconductor micropillars |
title_sort |
Scaling rules in optomechanical semiconductor micropillars |
dc.creator.none.fl_str_mv |
Anguiano, Sebastian Sesin, Pablo Ezequiel Bruchhausen, Axel Emerico Lamberti, F. R. Favero, I. Esmann, M. Sagnes, I. Lemaître, A. Lanzillotti Kimura, Norberto Daniel Senellart, P. Fainstein, Alejandro |
author |
Anguiano, Sebastian |
author_facet |
Anguiano, Sebastian Sesin, Pablo Ezequiel Bruchhausen, Axel Emerico Lamberti, F. R. Favero, I. Esmann, M. Sagnes, I. Lemaître, A. Lanzillotti Kimura, Norberto Daniel Senellart, P. Fainstein, Alejandro |
author_role |
author |
author2 |
Sesin, Pablo Ezequiel Bruchhausen, Axel Emerico Lamberti, F. R. Favero, I. Esmann, M. Sagnes, I. Lemaître, A. Lanzillotti Kimura, Norberto Daniel Senellart, P. Fainstein, Alejandro |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
optomecanica fonones acusticos resonadores micropilares |
topic |
optomecanica fonones acusticos resonadores micropilares |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Semiconductor pillar microcavities have recently emerged as a promising optomechanical platform in the unprecedented 20-GHz frequency range. Currently established models for the mechanical behavior of micropillars, however, rely on complete numerical simulations or semianalytical approaches, which makes their application to experiments notoriously difficult. Here we overcome this challenge with an effective model by reducing the full, hybridized mechanical mode picture of a micropillar to an approach that captures the observed global trends. We show experimentally the validity of this approach by studying the lateral size dependence of the frequency, amplitude, and lifetime of the mechanical modes of square-section pillar microcavities, using room-temperature pump-probe microscopy. General scaling rules for these quantities are found and explained through simple phenomenological models of the physical phenomena involved. We show that the energy shift Δωm of the modes due to confinement is dependent on the inverse of their frequency ω0 and lateral size L (Δωm1/ω0L2) and that the mode lifetime τ is linear with pillar size and inversely proportional to their frequency (τ L/ω0). The mode amplitude is in turn inversely proportional to the lateral size of the considered resonators. This is related to the dependence of the optomechanical coupling rate (g01/L) with the spatial extent of the confined electromagnetic and mechanical fields. Using a numerical model based on the finite-element method, we determine the magnitude and size dependence of g0 and, by combining the results with the experimental data, we discuss the attainable single-photon cooperativity in these systems. The effective models proposed and the scaling rules found constitute an important tool in micropillar optomechanics and in the future development of more complex micropillar based devices. Fil: Anguiano, Sebastian. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Sesin, Pablo Ezequiel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina Fil: Bruchhausen, Axel Emerico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Lamberti, F. R.. Centre National de la Recherche Scientifique; Francia Fil: Favero, I.. Centre National de la Recherche Scientifique; Francia Fil: Esmann, M.. Centre National de la Recherche Scientifique; Francia Fil: Sagnes, I.. Centre National de la Recherche Scientifique; Francia Fil: Lemaître, A.. Centre National de la Recherche Scientifique; Francia Fil: Lanzillotti Kimura, Norberto Daniel. Centre National de la Recherche Scientifique; Francia Fil: Senellart, P.. Centre National de la Recherche Scientifique; Francia Fil: Fainstein, Alejandro. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina |
description |
Semiconductor pillar microcavities have recently emerged as a promising optomechanical platform in the unprecedented 20-GHz frequency range. Currently established models for the mechanical behavior of micropillars, however, rely on complete numerical simulations or semianalytical approaches, which makes their application to experiments notoriously difficult. Here we overcome this challenge with an effective model by reducing the full, hybridized mechanical mode picture of a micropillar to an approach that captures the observed global trends. We show experimentally the validity of this approach by studying the lateral size dependence of the frequency, amplitude, and lifetime of the mechanical modes of square-section pillar microcavities, using room-temperature pump-probe microscopy. General scaling rules for these quantities are found and explained through simple phenomenological models of the physical phenomena involved. We show that the energy shift Δωm of the modes due to confinement is dependent on the inverse of their frequency ω0 and lateral size L (Δωm1/ω0L2) and that the mode lifetime τ is linear with pillar size and inversely proportional to their frequency (τ L/ω0). The mode amplitude is in turn inversely proportional to the lateral size of the considered resonators. This is related to the dependence of the optomechanical coupling rate (g01/L) with the spatial extent of the confined electromagnetic and mechanical fields. Using a numerical model based on the finite-element method, we determine the magnitude and size dependence of g0 and, by combining the results with the experimental data, we discuss the attainable single-photon cooperativity in these systems. The effective models proposed and the scaling rules found constitute an important tool in micropillar optomechanics and in the future development of more complex micropillar based devices. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/182525 Anguiano, Sebastian; Sesin, Pablo Ezequiel; Bruchhausen, Axel Emerico; Lamberti, F. R.; Favero, I.; et al.; Scaling rules in optomechanical semiconductor micropillars; American Physical Society; Physical Review A; 98; 6; 12-2018; 1-8 2469-9926 2469-9934 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/182525 |
identifier_str_mv |
Anguiano, Sebastian; Sesin, Pablo Ezequiel; Bruchhausen, Axel Emerico; Lamberti, F. R.; Favero, I.; et al.; Scaling rules in optomechanical semiconductor micropillars; American Physical Society; Physical Review A; 98; 6; 12-2018; 1-8 2469-9926 2469-9934 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevA.98.063810 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.98.063810 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613139143852032 |
score |
13.070432 |