Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model

Autores
Requist, Ryan; Proetto, Cesar Ramon; Gross, E. K. U.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The effective Hamiltonian for the linear E⊗e Jahn-Teller model describes the coupling between two electronic states and two vibrational modes in molecules or bulk crystal impurities. While in the Born-Oppenheimer approximation the Berry curvature has a delta function singularity at the conical intersection of the potential energy surfaces, the exact Berry curvature is a smooth peaked function. Numerical calculations revealed that the characteristic width of the peak is ℏK1/2/gM1/2, where M is the mass associated with the relevant nuclear coordinates, K is the effective internuclear spring constant, and g is the electronic-vibrational coupling. This result is confirmed here by an asymptotic analysis of the M→∞ limit, an interesting outcome of which is the emergence of a separation of length scales. Being based on the exact electron-nuclear factorization, our analysis does not make any reference to adiabatic potential energy surfaces or nonadiabatic couplings. It is also shown that the Ham reduction factors for the model can be derived from the exact geometric phase.
Fil: Requist, Ryan. Max-Planck-Institut für Mikrostrukturphysik; Alemania
Fil: Proetto, Cesar Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Gross, E. K. U.. The Hebrew University of Jerusalem; Israel. Max-Planck-Institut für Mikrostrukturphysik; Alemania
Materia
Berry Phase
The Effective Hamiltonian
Berry Curvature
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/68629

id CONICETDig_99c74ffa332aee817e2071a09a24ba81
oai_identifier_str oai:ri.conicet.gov.ar:11336/68629
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller modelRequist, RyanProetto, Cesar RamonGross, E. K. U.Berry PhaseThe Effective HamiltonianBerry Curvaturehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The effective Hamiltonian for the linear E⊗e Jahn-Teller model describes the coupling between two electronic states and two vibrational modes in molecules or bulk crystal impurities. While in the Born-Oppenheimer approximation the Berry curvature has a delta function singularity at the conical intersection of the potential energy surfaces, the exact Berry curvature is a smooth peaked function. Numerical calculations revealed that the characteristic width of the peak is ℏK1/2/gM1/2, where M is the mass associated with the relevant nuclear coordinates, K is the effective internuclear spring constant, and g is the electronic-vibrational coupling. This result is confirmed here by an asymptotic analysis of the M→∞ limit, an interesting outcome of which is the emergence of a separation of length scales. Being based on the exact electron-nuclear factorization, our analysis does not make any reference to adiabatic potential energy surfaces or nonadiabatic couplings. It is also shown that the Ham reduction factors for the model can be derived from the exact geometric phase.Fil: Requist, Ryan. Max-Planck-Institut für Mikrostrukturphysik; AlemaniaFil: Proetto, Cesar Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Gross, E. K. U.. The Hebrew University of Jerusalem; Israel. Max-Planck-Institut für Mikrostrukturphysik; AlemaniaAmerican Physical Society2017-12-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68629Requist, Ryan; Proetto, Cesar Ramon; Gross, E. K. U.; Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 96; 6; 12-12-2017; 062503-1/112469-99262469-9934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevA.96.062503info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.96.062503info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.062503info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:37Zoai:ri.conicet.gov.ar:11336/68629instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:37.471CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model
title Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model
spellingShingle Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model
Requist, Ryan
Berry Phase
The Effective Hamiltonian
Berry Curvature
title_short Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model
title_full Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model
title_fullStr Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model
title_full_unstemmed Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model
title_sort Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model
dc.creator.none.fl_str_mv Requist, Ryan
Proetto, Cesar Ramon
Gross, E. K. U.
author Requist, Ryan
author_facet Requist, Ryan
Proetto, Cesar Ramon
Gross, E. K. U.
author_role author
author2 Proetto, Cesar Ramon
Gross, E. K. U.
author2_role author
author
dc.subject.none.fl_str_mv Berry Phase
The Effective Hamiltonian
Berry Curvature
topic Berry Phase
The Effective Hamiltonian
Berry Curvature
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The effective Hamiltonian for the linear E⊗e Jahn-Teller model describes the coupling between two electronic states and two vibrational modes in molecules or bulk crystal impurities. While in the Born-Oppenheimer approximation the Berry curvature has a delta function singularity at the conical intersection of the potential energy surfaces, the exact Berry curvature is a smooth peaked function. Numerical calculations revealed that the characteristic width of the peak is ℏK1/2/gM1/2, where M is the mass associated with the relevant nuclear coordinates, K is the effective internuclear spring constant, and g is the electronic-vibrational coupling. This result is confirmed here by an asymptotic analysis of the M→∞ limit, an interesting outcome of which is the emergence of a separation of length scales. Being based on the exact electron-nuclear factorization, our analysis does not make any reference to adiabatic potential energy surfaces or nonadiabatic couplings. It is also shown that the Ham reduction factors for the model can be derived from the exact geometric phase.
Fil: Requist, Ryan. Max-Planck-Institut für Mikrostrukturphysik; Alemania
Fil: Proetto, Cesar Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Gross, E. K. U.. The Hebrew University of Jerusalem; Israel. Max-Planck-Institut für Mikrostrukturphysik; Alemania
description The effective Hamiltonian for the linear E⊗e Jahn-Teller model describes the coupling between two electronic states and two vibrational modes in molecules or bulk crystal impurities. While in the Born-Oppenheimer approximation the Berry curvature has a delta function singularity at the conical intersection of the potential energy surfaces, the exact Berry curvature is a smooth peaked function. Numerical calculations revealed that the characteristic width of the peak is ℏK1/2/gM1/2, where M is the mass associated with the relevant nuclear coordinates, K is the effective internuclear spring constant, and g is the electronic-vibrational coupling. This result is confirmed here by an asymptotic analysis of the M→∞ limit, an interesting outcome of which is the emergence of a separation of length scales. Being based on the exact electron-nuclear factorization, our analysis does not make any reference to adiabatic potential energy surfaces or nonadiabatic couplings. It is also shown that the Ham reduction factors for the model can be derived from the exact geometric phase.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/68629
Requist, Ryan; Proetto, Cesar Ramon; Gross, E. K. U.; Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 96; 6; 12-12-2017; 062503-1/11
2469-9926
2469-9934
CONICET Digital
CONICET
url http://hdl.handle.net/11336/68629
identifier_str_mv Requist, Ryan; Proetto, Cesar Ramon; Gross, E. K. U.; Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 96; 6; 12-12-2017; 062503-1/11
2469-9926
2469-9934
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevA.96.062503
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.96.062503
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.062503
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268679185629184
score 13.13397