Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model
- Autores
- Requist, Ryan; Proetto, Cesar Ramon; Gross, E. K. U.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The effective Hamiltonian for the linear E⊗e Jahn-Teller model describes the coupling between two electronic states and two vibrational modes in molecules or bulk crystal impurities. While in the Born-Oppenheimer approximation the Berry curvature has a delta function singularity at the conical intersection of the potential energy surfaces, the exact Berry curvature is a smooth peaked function. Numerical calculations revealed that the characteristic width of the peak is ℏK1/2/gM1/2, where M is the mass associated with the relevant nuclear coordinates, K is the effective internuclear spring constant, and g is the electronic-vibrational coupling. This result is confirmed here by an asymptotic analysis of the M→∞ limit, an interesting outcome of which is the emergence of a separation of length scales. Being based on the exact electron-nuclear factorization, our analysis does not make any reference to adiabatic potential energy surfaces or nonadiabatic couplings. It is also shown that the Ham reduction factors for the model can be derived from the exact geometric phase.
Fil: Requist, Ryan. Max-Planck-Institut für Mikrostrukturphysik; Alemania
Fil: Proetto, Cesar Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Gross, E. K. U.. The Hebrew University of Jerusalem; Israel. Max-Planck-Institut für Mikrostrukturphysik; Alemania - Materia
-
Berry Phase
The Effective Hamiltonian
Berry Curvature - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/68629
Ver los metadatos del registro completo
id |
CONICETDig_99c74ffa332aee817e2071a09a24ba81 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/68629 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller modelRequist, RyanProetto, Cesar RamonGross, E. K. U.Berry PhaseThe Effective HamiltonianBerry Curvaturehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The effective Hamiltonian for the linear E⊗e Jahn-Teller model describes the coupling between two electronic states and two vibrational modes in molecules or bulk crystal impurities. While in the Born-Oppenheimer approximation the Berry curvature has a delta function singularity at the conical intersection of the potential energy surfaces, the exact Berry curvature is a smooth peaked function. Numerical calculations revealed that the characteristic width of the peak is ℏK1/2/gM1/2, where M is the mass associated with the relevant nuclear coordinates, K is the effective internuclear spring constant, and g is the electronic-vibrational coupling. This result is confirmed here by an asymptotic analysis of the M→∞ limit, an interesting outcome of which is the emergence of a separation of length scales. Being based on the exact electron-nuclear factorization, our analysis does not make any reference to adiabatic potential energy surfaces or nonadiabatic couplings. It is also shown that the Ham reduction factors for the model can be derived from the exact geometric phase.Fil: Requist, Ryan. Max-Planck-Institut für Mikrostrukturphysik; AlemaniaFil: Proetto, Cesar Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Gross, E. K. U.. The Hebrew University of Jerusalem; Israel. Max-Planck-Institut für Mikrostrukturphysik; AlemaniaAmerican Physical Society2017-12-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68629Requist, Ryan; Proetto, Cesar Ramon; Gross, E. K. U.; Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 96; 6; 12-12-2017; 062503-1/112469-99262469-9934CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevA.96.062503info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.96.062503info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.062503info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:37Zoai:ri.conicet.gov.ar:11336/68629instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:37.471CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model |
title |
Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model |
spellingShingle |
Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model Requist, Ryan Berry Phase The Effective Hamiltonian Berry Curvature |
title_short |
Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model |
title_full |
Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model |
title_fullStr |
Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model |
title_full_unstemmed |
Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model |
title_sort |
Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model |
dc.creator.none.fl_str_mv |
Requist, Ryan Proetto, Cesar Ramon Gross, E. K. U. |
author |
Requist, Ryan |
author_facet |
Requist, Ryan Proetto, Cesar Ramon Gross, E. K. U. |
author_role |
author |
author2 |
Proetto, Cesar Ramon Gross, E. K. U. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Berry Phase The Effective Hamiltonian Berry Curvature |
topic |
Berry Phase The Effective Hamiltonian Berry Curvature |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The effective Hamiltonian for the linear E⊗e Jahn-Teller model describes the coupling between two electronic states and two vibrational modes in molecules or bulk crystal impurities. While in the Born-Oppenheimer approximation the Berry curvature has a delta function singularity at the conical intersection of the potential energy surfaces, the exact Berry curvature is a smooth peaked function. Numerical calculations revealed that the characteristic width of the peak is ℏK1/2/gM1/2, where M is the mass associated with the relevant nuclear coordinates, K is the effective internuclear spring constant, and g is the electronic-vibrational coupling. This result is confirmed here by an asymptotic analysis of the M→∞ limit, an interesting outcome of which is the emergence of a separation of length scales. Being based on the exact electron-nuclear factorization, our analysis does not make any reference to adiabatic potential energy surfaces or nonadiabatic couplings. It is also shown that the Ham reduction factors for the model can be derived from the exact geometric phase. Fil: Requist, Ryan. Max-Planck-Institut für Mikrostrukturphysik; Alemania Fil: Proetto, Cesar Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Gross, E. K. U.. The Hebrew University of Jerusalem; Israel. Max-Planck-Institut für Mikrostrukturphysik; Alemania |
description |
The effective Hamiltonian for the linear E⊗e Jahn-Teller model describes the coupling between two electronic states and two vibrational modes in molecules or bulk crystal impurities. While in the Born-Oppenheimer approximation the Berry curvature has a delta function singularity at the conical intersection of the potential energy surfaces, the exact Berry curvature is a smooth peaked function. Numerical calculations revealed that the characteristic width of the peak is ℏK1/2/gM1/2, where M is the mass associated with the relevant nuclear coordinates, K is the effective internuclear spring constant, and g is the electronic-vibrational coupling. This result is confirmed here by an asymptotic analysis of the M→∞ limit, an interesting outcome of which is the emergence of a separation of length scales. Being based on the exact electron-nuclear factorization, our analysis does not make any reference to adiabatic potential energy surfaces or nonadiabatic couplings. It is also shown that the Ham reduction factors for the model can be derived from the exact geometric phase. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/68629 Requist, Ryan; Proetto, Cesar Ramon; Gross, E. K. U.; Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 96; 6; 12-12-2017; 062503-1/11 2469-9926 2469-9934 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/68629 |
identifier_str_mv |
Requist, Ryan; Proetto, Cesar Ramon; Gross, E. K. U.; Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 96; 6; 12-12-2017; 062503-1/11 2469-9926 2469-9934 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevA.96.062503 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.96.062503 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.062503 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268679185629184 |
score |
13.13397 |